【題目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范圍.
【答案】
(1)解:由A中不等式變形得:(x﹣2)(x﹣4)<0,
解得:2<x<4,即A={x|2<x<4},
把a=1代入B得:(x﹣1)(x﹣3)<0,
解得:1<x<3,即B={x|1<x<3},
則A∩B={x|2<x<3}
(2)解:要滿足A∩B=,
當a=0時,B=滿足條件;
當a>0時,B={x|a<x<3a},可得a≥4或3a≤2.
解得:0<a≤ 或a≥4;
當a<0時,B={x|3a<x<a},顯然a<0時成立,
綜上所述,a的取值范圍是(﹣∞, ]∪[4,+∞)
【解析】(1)求出A中不等式的解集確定出A,把a=1代入確定出B,求出A與B的交集即可;(2)由A與B交集為空集,分a=0,a>0與a<0三種情況求出a的范圍即可.
【考點精析】解答此題的關鍵在于理解集合的交集運算的相關知識,掌握交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線
的極坐標方程為
,直線
的參數方程為
(
為參數,
為直線的傾斜角).
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
有唯一的公共點,求角
的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線
,
的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(1)將放在容器Ⅰ中,
的一端置于點A處,另一端置于側棱
上,求
沒入水中部分的長度;
(2)將放在容器Ⅱ中,
的一端置于點E處,另一端置于側棱
上,求
沒入水中部分的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖5所示,已知四棱錐中,底面
為矩形,
底面
,
,
,
為
的中點.
⑴指出平面與
的交點
所在位置,并給出理由;
⑵求平面將四棱錐
分成上下兩部分的體積比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=x2+bx+c對于任意實數t都有f(2+t)=f(2﹣t),則f(1),f(2),f(4)的大小關系為( )
A.f(1)<f(2)<f(4)
B.f(2)<f(1)<f(4)
C.f(4)<f(2)<f(1)
D.f(4)<f(1)<f(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天氣預報是氣象專家根據預測的氣象資料和專家們的實際經驗,經過分析推斷得到的,在現實的生產生活中有著重要的意義,某快餐企業的營銷部門對數據分析發現,企業經營情況與降雨填上和降雨量的大小有關.
(1)天氣預報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機產生0大9之間取整數值的隨機數,并用表示下雨,其余
個數字表示不下雨,產生了20組隨機數:
求由隨機模擬的方法得到的概率值;
(2)經過數據分析,一天內降雨量的大小(單位:毫米)與其出售的快餐份數
成線性相關關系,該營銷部門統計了降雨量與出售的快餐份數的數據如下:
試建立關于
的回歸方程,為盡量滿足顧客要求又不在造成過多浪費,預測降雨量為6毫米時需要準備的快餐份數.(結果四舍五入保留整數)
附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節目,選手面對1號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應的家庭夢想基金,在一次場外調查中,發現參賽選手多數分為兩個年齡段:
;
(單位:歲),其猜對歌曲名稱與否的人數如圖所示.
(Ⅰ)寫出列聯表;判斷是否有
的把握認為猜對歌曲名稱是否與年齡有關;說明你的理由;(如表的臨界值表供參考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)現計劃在這次場外調查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中恰好有一人在歲之間的概率.
(參考公式: ,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
(Ⅰ)求關于
的函數解析式;
(Ⅱ)根據直方圖估計利潤不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com