精英家教網 > 高中數學 > 題目詳情

已知是首項的遞增等差數列,為其前項和,且
(1)求數列的通項公式;
(2)設數列滿足,為數列的前n項和.若對任意的,不等式恒成立,求實數的取值范圍.

(1);(2)。

解析試題分析:(1)把式中的、進行代換得聯立方程組解出,即可求出通項公式;(2)由(1)可得的通項公式,通過觀察求的前項和可通過裂項求得,求得后代入不等式,得到一個關于的二元一次不等式,要求的取值范圍可通過將分離出來,然后用不等式的基本性質及函數的基本性質即可求出的取值范圍。
試題解析:(1)由,
           (2分)
            (4分)
(2)由(1)得
所以     (6分)
由已知得:恒成立,
,所以恒成立,              (7分)
,則
為偶數時,
當且僅當,即時,,所以;  (8分)
為奇數時,
可知的增大而增大,所以,所以  (9分)
綜上所訴,的取值范圍是      (10分)  (其他解法請酌情給分)
考點:1、等差數列通項公式及前項和公式;2、列項求和法;3、基本不等式;4、函數的單調性。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在等差數列{an}和等比數列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數列,a2,b2,a3+2成等比數列,數列{bn}的前n項和為Sn
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)若Sn+an>m對任意的正整數n恒成立,求常數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列的前n項和,數列滿足
(1)若成等比數列,試求的值;
(2)是否存在,使得數列中存在某項滿足()成等差數列?若存在,請指出符合題意的的個數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,數列的前n項和為,點在曲線,且.
(1)求數列的通項公式;
(2)數列的前n項和為,且滿足,問:當為何值時,數列是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列為等差數列,且,數列的前項和為,
(1)求數列的通項公式;
(2)若,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在公差為d的等差數列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列的前項和為,且和1的等差中項,等差數列滿足
(1)求數列,的通項公式;
(2)設,數列的前n項和為,若對一切恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足,.
(1)若為遞增數列,且成等差數列,求的值;
(2)若,且是遞增數列,是遞減數列,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足,向量,.
(1)求證數列為等差數列,并求通項公式;
(2)設,若對任意都有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视