【題目】觀察下列等式
l+2+3+…+n= n(n+l);
l+3+6+…+ n(n+1)=
n(n+1)(n+2);
1+4+10+… n(n+1)(n+2)=
n(n+1)(n+2)(n+3);
可以推測,1+5+15+…+ n(n+1)(n+2)(n+3)= .
【答案】n(n+1)(n+2)(n+3)(n+4),(n∈N*)
【解析】解:根據已知中的等式:
l+2+3+…+n= n(n+l);
l+3+6+…+ n(n+1)=
n(n+1)(n+2);
1+4+10+… n(n+1)(n+2)=
n(n+1)(n+2)(n+3);
歸納可得:第K個等式右邊系數的分母是K!,后面依次是從n開始的K個連續整數的積,
故1+5+15+…+ n(n+1)(n+2)(n+3)=
n(n+1)(n+2)(n+3)(n+4),(n∈N*)
所以答案是: n(n+1)(n+2)(n+3)(n+4),(n∈N*)
【考點精析】解答此題的關鍵在于理解歸納推理的相關知識,掌握根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理.
科目:高中數學 來源: 題型:
【題目】已知定義在[﹣1,1]的函數滿足f(﹣x)=﹣f(x),當a,b∈[﹣1,0)時,總有 >0(a≠b),若f(m+1)>f(2m),則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線
與橢圓
交于
,
兩點,點
在直線
的左上方.若
,且直線
,
分別與
軸交于
,
點,求線段
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( )x的圖象與函數g(x)的圖象關于直線y=x對稱,令h(x)=g(1﹣|x|),則關于h(x)有下列命題:
①h(x)的圖象關于原點對稱;
②h(x)為偶函數;
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數.
其中正確命題的序號為:②③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:f(x)=2 cos2x+sin2x﹣
+1(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的單調增區間;
(3)若x∈[﹣ ,
]時,求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌茶壺的原售價為80元/個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購買一個茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;…,一次購買的茶壺數每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個;乙店一律按原價的75%銷售.現某茶社要購買這種茶壺x個,如果全部在甲店購買,則所需金額為y1元;如果全部在乙店購買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數關系式;
(2)該茶社去哪家茶具店購買茶壺花費較少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為整數的數列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N* .
(1)若m=1,n=2,寫出所有滿足條件的數列{an};
(2)設滿足條件的{an}的個數為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com