【題目】三條直線3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0圍成直角三角形,求實數m的值.
【答案】(1)或
或m=
【解析】
直線2mx-3y+12=0過定點A(0,4),若三條直線能圍成直角三角形,則根據直線垂直與斜率之間的關系即可得到結論.
(1)當直線3x+2y+6=0與直線2x-3m2y+18=0垂直時,有6-6m2=0,∴m=1或m=-1.
若m=1,直線2mx-3y+12=0也與直線3x+2y+6=0垂直,因而不能構成三角形,故m=1應舍去.
∴m=-1.
(2)當直線3x+2y+6=0與直線2mx-3y+12=0垂直時,有6m-6=0,m=1(舍).
(3)當直線2x-3m2y+18=0與直線2mx-3y+12=0垂直時,有4m+9m2=0.
∴m=0或m= .
經檢驗,這兩種情形均滿足題意.
綜上所述,m=-1或m=0或m=.
科目:高中數學 來源: 題型:
【題目】某學校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區間為,
,…,
).
(1)求成績在的頻率,并補全此頻率分布直方圖;
(2)求這次考試平均分的估計值;
(3)若從成績在和
的學生中任選兩人,求他們的成績在同一分組區間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等比數列{an}中,a1=1,且a2是a1與a3﹣1的等差中項.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足 .求數列{bn}的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinωxcosωx+ cos2ωx﹣
(ω>0),直線x=x1 , x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1﹣x2|的最小值為
.
(1)求f(x)的表達式;
(2)將函數f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數y=g(x)的圖象,若關于x的方程g(x)+k=0,在區間
上有且只有一個實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的單調區間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 是[1,∞]上的增函數.當實數m取最大值時,若存在點Q,使得過Q的直線與曲線y=g(x)圍成兩個封閉圖形,且這兩個封閉圖形的面積總相等,則點Q的坐標為( )
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為保護河上古橋OA,規劃建一座新橋BC,同時設立一個圓形保護區.規劃要求:新橋BC與河岸AB垂直;保護區的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數g(x)=ax+b的圖象大致為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com