【題目】已知平面內動點到兩定點
和
的距離之和為4.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)已知直線和
的傾斜角均為
,直線
過坐標原點
且與曲線
相交于
,
兩點,直線
過點
且與曲線
是交于
,
兩點,求證:對任意
,
.
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點在平面BCD內的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線
的左、右焦點,過點
作垂直與
軸的直線交雙曲線于
,
兩點,若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據雙曲線的通徑求得點的坐標,將三角形
為銳角三角形,轉化為
,即
,將表達式轉化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據雙曲線的通徑可知,由于三角形
為銳角三角形,結合雙曲線的對稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉化的數學思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉化為
,利用
列不等式,再將不等式轉化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結束】
17
【題目】已知命題:方程
有兩個不相等的實數根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正四棱錐中,
為底面正方形的中心,側棱
與底面
所成的角的正切值為
.
(1)求側面與底面
所成的二面角的大;
(2)若是
的中點,求異面直線
與
所成角的正切值;
(3)問在棱上是否存在一點
,使
⊥側面
,若存在,試確定點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以直角坐標系的原點
為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(Ⅰ)求曲線的直角坐標方程和直線
的普通方程;
(Ⅱ)若直線與曲線
相交于
,
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】探究與發現:為什么二次函數的圖象是拋物線?我們知道,平面內與一個定點F和一條定直線l距離相等的點的軌跡是拋物線,這是拋物線的定義,也是其本質特征
因此,只要說明二次函數的圖象符合拋物線的本質特征,就解決了為什么二次函數
的圖象是拋物線的問題
進一步講,由拋物線與其方程之間的關系可知,如果能用適當的方式將
轉化為拋物線標準方程的形式,那么就可以判定二次函數
的圖象是拋物線了.下面我們就按照這個思路來展開.對二次函數式
的右邊配方,得
.由函數圖象平移
一般地,設
是坐標平面內的一個圖形,將
上所有點按照同一方向,移動同樣的長度,得到圖形
,這一過程叫作圖形的平移
的知識可以知道,沿向量
平移函數
的圖象
如圖,函數圖象的形狀、大小不發生任何變化,平移后圖象對應的函數解析式為
,我們把它改寫為
的形式
方程
,這是頂點為坐標原點,焦點為
的拋物線.這樣就說明了二次函數
的圖象是一條拋物線.
請根據以上閱讀材料,回答下列問題:
由函數
的圖象沿向量
平移,得到的圖象對應的函數解析式為
,求
的坐標;
過拋物線
的焦點F的一條直線交拋物線于P、Q兩點若線段PF與QF的長分別是p、q,試探究
是否為定值?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某市主辦的科技知識競賽的學生成績中隨機選取了40名學生的成績作為樣本,已知這些成績全部在40分至100分之間,現將成績按如下方式分成6組:第一組;第二組
;
;第六組
,并據此繪制了如圖所示的頻率分布直方圖.
求成績在區間
內的學生人數;
估計這40名學生成績的眾數和中位數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com