精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的焦距為4,且過點.

1)求橢圓的標準方程;

2)設為橢圓上一點,過點軸的垂線,垂足為,取點,連接,過點的垂線交軸于點,點是點關于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

【答案】(1) (2) 直線與橢圓一定有唯一的公共點,見解析

【解析】

1)根據題意得到關于、的方程組,解得.

2)由題意,點坐標為,設,由知,求出,根據對稱表示出點坐標,即可表示出直線的方程,聯立直線與橢圓方程消元可得.

解:(1)因為焦距為4,所以,又因為橢圓過點,

所以,故,從而橢圓的方程為

已知橢圓的焦距為4,且過點.

2)由題意,點坐標為,設,則,再由知,,即.

由于,故,因為點是點關于軸的對稱點,所以點.

故直線的斜率.

又因在橢圓上,所以.

從而,故直線的方程為

將②代入橢圓方程,得

再將①代入③,化簡得:

解得,,即直線與橢圓一定有唯一的公共點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】氣象意義上從春季進入夏季的標志為連續5天的日平均溫度均不低于22℃.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據:(記錄數據都是正整數)

①甲地5個數據的中位數為24,眾數為22;

②乙地5個數據的中位數為27,總體均值為24;

③丙地5個數據中有一個數據是32,總體均值為26,總體方差為10.8.

則肯定進入夏季的地區有_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學生中,隨機抽取40名學生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數與眾數;

2)若從競賽成績在兩個分數段的學生中隨機選取兩名學生,設這兩名學生的競賽成績之差的絕對值不大于分為事件,求事件發生的概率.

3)為了激勵同學們的學習熱情,現評出一二三等獎,得分在內的為一等獎,得分在內的為二等獎, 得分在內的為三等獎.若將頻率視為概率,現從考生中隨機抽取三名,設為獲得三等獎的人數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.

(Ⅰ)求實數的值;

(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】綠水青山就是金山銀山的生態文明發展理念已經深入人心,這將推動新能源汽車產業的迅速發展,下表是近幾年我國某地區新能源乘用車的年銷售量與年份的統計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機構調查了該地區30位購車車主的性別與購車種類情況,得到的部分數據如下表所示:

購置傳統燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關于年份的線性相關系數,并判斷是否線性相關;

2)請將上述列聯表補充完整,并判斷是否有的把握認為購車車主是否購置新能源乘用車與性別有關;

參考公式:,其中.,若,則可判斷線性相關.

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某某大學藝術專業400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;

(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區間[40,50)內的人數;

(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定數列,若滿足),對于任意,都有,則稱數列為指數數列.

1)已知數列的通項公式分別為,,試判斷、是不是指數數列(需說明理由);

2)若數列滿足:,,證明:是指數數列;

3)若是指數數列,,證明:數列中任意三項都不能構成等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,對任意,點都在函數的圖象上.

(1),歸納數列的通項公式(不必證明).

(2)將數列依次按項、項、項、項、項循環地分為,,,各個括號內各數之和,設由這些和按原來括號的前后順序構成的數列為,求的值.

(3)為數列的前項積,若不等式對一切都成立,其中,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為定義在上的奇函數,當時,有,且當時,,下列命題正確的是( )

A.B.函數在定義域上是周期為的函數

C.直線與函數的圖象有個交點D.函數的值域為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视