精英家教網 > 高中數學 > 題目詳情

【題目】若函數y=f(x)的定義域是[0,2],則函數y=f(2x﹣1)的定義域是( )
A.{x|0≤x≤1}
B.{x|0≤x≤2}
C.{x| ≤x≤ }
D.{x|﹣1≤x≤3}

【答案】C
【解析】解:∵函數y=f(x)的定義域是[0,2],

∴由0≤2x﹣1≤2,解得

∴函數y=f(2x﹣1)的定義域是{x| }.

所以答案是:C.

【考點精析】關于本題考查的函數的定義域及其求法,需要了解求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐S﹣ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一點.過點E的平面α垂直于平面SAC.

(1)請作出平面α截四棱錐S﹣ABCD的截面(只需作圖并寫出作法);
(2)當SA=AB時,求二面角B﹣SC﹣D的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的首項a1= ,an+1= ,n∈N*
(1)求證:數列{ ﹣1}為等比數列;
(2)記Sn= + +…+ ,若Sn<100,求滿足條件的最大正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是等比數列,滿足a2=6,a3=﹣18,數列{bn}滿足b1=2,且{2bn+an}是公差為2的等差數列.
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)求數列{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數列A為“U﹣數列”.
(Ⅰ)若數列1,x,y,7為“U﹣數列”,寫出所有可能的x,y;
(Ⅱ)若“U﹣數列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)設n0為給定的偶數,對所有可能的“U﹣數列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數中最大的數,求M的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)在R上是增函數,則下列說法正確的是( )
A.y=﹣f(x)在R上是減函數
B.y= 在R上是減函數
C.y=[f(x)]2在R上是增函數
D.y=af(x)(a為實數)在R上是增函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)的定義域為D={x|x≠0},且滿足對于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結論;
(3)如果f(4)=1,f(x﹣1)<2,且f(x)在(0,+∞)上是增函數,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(1+x)﹣x+ x2(k≥0). (Ⅰ)當k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解下列不等式:
(1)9x+3x<6(3x﹣1);
(2)log (2x+1) (x2﹣2).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视