【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=
AD=a,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36,求a的值.
【答案】(1)見解析;(2)6.
【解析】
試題分析:(1)在折疊前,根據平幾知識得BE⊥AC.從而折疊后BE⊥A1O,BE⊥OC,再根據線面垂直判定定理得結果(2)由面面垂直性質定理得A1O⊥平面BCDE,再根據錐體體積公式得關于a的方程,解得a的值.
試題解析:(1)證明:在題圖①中,因為AB=BC=AD=a,E是AD的中點,∠BAD=
,所以BE⊥AC.
即在題圖②中,BE⊥A1O,BE⊥OC,
從而BE⊥平面A1OC,
又CD∥BE,所以CD⊥平面A1OC.
(2)由已知,平面A1BE⊥平面BCDE,
且平面A1BE∩平面BCDE=BE,
又由(1),A1O⊥BE,所以A1O⊥平面BCDE,
即A1O是四棱錐A1BCDE的高.
由題圖①知,A1O=AB=
a,平行四邊形BCDE的面積S=BC·AB=a2.
從而四棱錐A1BCDE的體積為V=×S×A1O=
×a2×
a=
a3,由
a3=36
,得a=6.
科目:高中數學 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構進行了網上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態度的人數如下表所示:
支持 | 保留 | 不支持 | |
| |||
|
(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態度的人中抽取了
人,求
的值;
(2)在持“不支持”態度的人中,用分層抽樣的方法抽取人看成一個總體,從這
人中任意選取
人,求
歲以下人數
的分布列和期望;
(3)在接受調查的人中,有人給這項活動打出的分數如下:
,
,
,
,
,
,
,
,
,
,把這
個人打出的分數看作一個總體,從中任取一個數,求該數與總體平均數之差的絕對值超過
概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(多選)某中學高一年級有20個班,每班50人;高二年級有30個班,每班45人.甲就讀于高一,乙就讀于高二.學校計劃從這兩個年級中共抽取235人進行視力調查,下列說法中正確的有( )
A.應該采用分層隨機抽樣法
B.高一、高二年級應分別抽取100人和135人
C.乙被抽到的可能性比甲大
D.該問題中的總體是高一、高二年級的全體學生的視力
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年1月1日,我國全面實行二孩政策,某機構進行了街頭調查,在所有參與調查的青年男女中,持“響應”“猶豫”和“不響應”態度的人數如下表所示:
響應 | 猶豫 | 不響應 | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根據已知條件完成下面的列聯表,并判斷能否有
的把握認為猶豫與否與性別有關?請說明理由.
猶豫 | 不猶豫 | 總計 | |
男性青年 | |||
女性青年 | |||
總計 | 1800 |
參考公式:
參考數據:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左、右頂點分別為
,直線
與雙曲線交于
,直線
交直線
于點
.
(1)求點的軌跡方程;
(2)若點的軌跡與矩形
的四條邊都相切,探究矩形
對角線長是否為定值,若是,求出此值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,若同時滿足下列三個條件:①
;② 當
,且
時,都有
;③ 當
,且
時,都有
, 則稱
為“偏對稱函數”.現給出下列三個函數:
;
;
則其中是“偏對稱函數”的函數個數為
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com