【題目】解不等式:0≤x2﹣x﹣2≤4.
【答案】解:由x2﹣x﹣2≥0得x≥2或x≤﹣1①
由x2﹣x﹣2≤4得x2﹣x﹣6≤0
∴﹣2≤x≤3②
由①、②得2≤x≤3或﹣2≤x≤﹣1
∴不等式的解集為[﹣2,﹣1]∪[2,3]
【解析】將不等式0≤x2﹣x﹣2≤4看成兩個不等式x2﹣x﹣2≥0,x2﹣x﹣2≤4,分別根據一元二次不等式進行求解,最后求交集即可.
【考點精析】認真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規律:當二次項系數為正時,小于取中間,大于取兩邊).
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為
(
為參數),以原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
寫出曲線
的極坐標的方程以及曲線
的直角坐標方程;
若過點
(極坐標)且傾斜角為
的直線
與曲線
交于
,
兩點,弦
的中點為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓錐的軸截面SAB是邊長為4的正三角形(S為頂點),O為底面中心,M為SO中點,動點P在圓錐底面內(包括圓周),若AM⊥MP,則點P形成的軌跡長度為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某重點高中擬把學校打造成新型示范高中,為此制定了學生“七不準”,“一日三省十問”等新的規章制度.新規章制度實施一段時間后,學校就新規章制度隨機抽取部分學生進行問卷調查,調查卷共有10個問題,每個問題10分,調查結束后,按分數分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分數的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數據).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分數在70分以下的學生中隨機抽取2名學生進行座談會,求所抽取的2名學生中恰有一人得分在[50,60)內的概率.
5 | 3 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化妝品生產企業為了占有更多的市場份額,擬在2010年世博會期間進行一系列促銷活動,經過市場調查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足3﹣x與t+1成反比例,如果不搞促銷活動,化妝品的年銷量只能是1萬件,已知2010年生產化妝品的設備折舊、維修等固定費用為3萬元,每生產1萬件化妝品需要再投入32萬元的生產費用,若將每件化妝品的售價定為:其生產成本的150%與平均每件促銷費的一半之和,則當年生產的化妝品正好能銷完.
(1)將2010年利潤y(萬元)表示為促銷費t(萬元)的函數;
(2)該企業2010年的促銷費投入多少萬元時,企業的年利潤最大?
(注:利潤=銷售收入﹣生產成本﹣促銷費,生產成本=固定費用+生產費用)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com