【題目】已知橢圓過點
,且焦距為4
(1)求橢圓的標準方程:
(2)設為直線
上一點,
為橢圓
上一點.以
為直徑的圓恒過坐標原點
.
(i)求的取值范圍
(ii)是否存在圓心在原點的定圓恒與直線相切?若存在,求出該定圓的方程;若不存在,說明理由.
【答案】(1)(2)(i)
(ii)存在;定圓的方程
【解析】
(1)將點代入橢圓方程,結合
關系,即可求解;
(2)(i)設,由已知有
,可得
代入橢圓方程,將
用
表示,進而求出
關于
的函數,根據函數特征求出最值;
(ii)將問題轉化為原點到直線的距離是否為定值,先求出直線
方程,求出坐標原點到直線
的距離,利用(i)中關系將
用
表示,整理即可得出結論.
(1)將點的坐標代入橢圓的方程得
,
解得,
所以橢圓C的方程為
(2)設.
因為以為直徑的圓恒過點
,
所以,即
因為點在橢圓上,所以
;
(i)將代入橢圓,得
于是
因為
當且僅當,即
時,取等號.
所以的取值范圍為
(ii)存在.定圓的方程為.
假設存在滿足題意的定圓,則點到直線
的距離為定值.
因為,所以直線
方程為
,
整理可得
所以到直線
的距離
由(i)知,,得.
,
注意到,知
所以
又
,
所以,
因此,直線與圓
恒相切.
科目:高中數學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據以往的種菜經驗,發現種西紅柿的年收入種黃瓜的年收入
與投入
(單位:萬元)滿足
.設甲大棚的投入為
(單位:萬元),每年兩個大棚的總收益為
(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為認真貫徹落實黨中央國務院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調控政策的連續性和穩定性,進一步穩定某省市商品住房市場,該市人民政府辦公廳出臺了相關文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區的房價均值數據:
| 2 | 3 | 4 | 5 | 6 |
| 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、
具有線性相關關系,求房價均價
(千元/平方米)關于月份
的線性回歸方程
;
(2)根據線性回歸方程預測該市某城區7月份的房價.
(參考公式:用最小二乘法求線性回歸方程的系數公式
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角中,
,
通過
以直線
為軸順時針旋轉
得到(
).點
為斜邊
上一點.點
為線段
上一點,且
.
(1)證明:平面
;
(2)當直線與平面
所成的角取最大值時,求二面角
的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,
,下列說法正確的是( )
A.當時,
在
處的切線方程為
B.當時,
存在唯一極小值點
,且
C.對任意,
在
上均存在零點
D.存在,
在
上有且只有一個零點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】水是生命之源,為了引導市民科學用水,我國加快階梯水價推行,原則是“保基本、建機制、促節約”,其中“;”是指保證至少80%的居民用戶用水價格不變,“建機制”是制定合理的階梯用水價格某城市采用簡單隨機抽樣的方法從郊區和城區分別抽取5戶和20戶居民的年人均用水量(單位:噸)進行調研,抽取數據的莖葉圖如下:
(1)若在郊區的這5戶居民中隨機抽取2戶,求“被抽取的2戶年人均用水量的和超過60噸”的概率;
(2)若該城市郊區和城區的居民戶數比為1:5,現將年人均用水量不超過30噸的用戶定義為第一階梯用戶,只保證這一梯次的居民用戶用水價格不變,試根據樣本估計總體的思想分析此方案是否符合國家“保基本”政策.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從廣安市某中學校的名男生中隨機抽取
名測量身高,被測學生身高全部介于
cm和
cm之間,將測量結果按如下方式分成八組:第一組
,第二組
,...,第八組
,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為
人.
(1)求第七組的頻率;
(2)估計該校名男生的身高的中位數以及身高在
cm以上(含
cm)的人數;
(3)若從樣本中身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,求抽出的兩名男生在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現了數學的對稱美.圖2是一個棱數為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為
,橢圓的左,右焦點分別為F1,F2,點M為橢圓上的一個動點,△MF1F2面積的最大值為
,過橢圓外一點(m,0)(m>a)且傾斜角為
的直線l交橢圓于C,D兩點.
(1)求橢圓的方程;
(2)若,求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com