【題目】已知圓的圓心為原點,其半徑與橢圓
的左焦點和上頂點的連線線段長度相等.
(1)求圓的標準方程;
(2)過橢圓右焦點的動直線(其斜率不為0)交圓
于
兩點,試探究在
軸正半軸上是否存在定點
,使得直線
與
的斜率之和為0?若存在,求出點
的坐標,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結論正確的是( )
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解學生考試時的緊張程度,現對100名同學進行評估,打分區間為,得到頻率分布直方圖如下,其中
成等差數列,且
.
(1)求的值;
(2)現采用分層抽樣的方式從緊張度值在,
中共抽取5名同學,再從這5名同學中隨機抽取2人,求至少有一名同學是緊張度值在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《最強大腦》是江蘇衛視引進德國節目《SuperBrain》而推出的大型科學競技真人秀節目.節目籌備組透露挑選選手的方式:不但要對空間感知、照相式記憶進行考核,而且要讓選手經過名校最權威的腦力測試,120分以上才有機會入圍.某重點高校準備調查腦力測試成績是否與性別有關,在該高校隨機抽取男、女學生各100名,然后對這200名學生進行腦力測試.規定:分數不小于120分為“入圍學生”,分數小于120分為“未入圍學生”.已知男生入圍24人,女生未入圍80人.
(1)根據題意,填寫下面的列聯表,并根據列聯表判斷是否有
以上的把握認為腦力測試后是否為“入圍學生”與性別有關;
性別 | 入圍人數 | 未入圍人數 | 總計 |
男生 | 24 | ||
女生 | 80 | ||
總計 |
(2)用分層抽樣的方法從“入圍學生”中隨機抽取11名學生,然后再從這11名學生中抽取3名參加某期《最強大腦》,設抽到的3名學生中女生的人數為,求
的分布列及數學期望.
附:,其中
.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,拋物線
的方程為
,以點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,
與
軸交于點
.
(1)求直線的直角坐標方程,點
的極坐標;
(2)設與
交于
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在創建“全國文明衛生城”過程中,某市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調查的100人的得分(滿分100分)統計結果如下表所示:
(I)由頻數分布表可以大致認為,此次問卷調查的得分Z服從正態分布近似為這100人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求P(37<Z≤79);
(II)在(I)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:
①得分不低于的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
現有市民甲參加此次問卷調查,記 (單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列與數學期望.
附:參考數據與公式:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com