考察下列式子:
,得出的一般性結論為________________________
【解析】
試題分析:由1=12=(2×1-1)2;
2+3+4=32=(2×2-1)2;
3+4+5+6+7=52=(2×3-1)2;
4+5+6+7+8+9+10=72=(2×4-1)2;
………
由上邊的式子可以得出:第n個等式的左邊的第一項為n,接下來依次加1,共有2n-1項,等式右邊是2n-1的平方,
從而我們可以得出的一般性結論為:n+(n+1)+…+(2n-1)+…+(3n-2)=(2n-1)2(n∈N*)。
考點:本題主要考查歸納推理。
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發現某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).解題時要注意觀察,善于總結.
科目:高中數學 來源:全優設計選修數學-1-2蘇教版 蘇教版 題型:022
考察下列式子:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72;…得出的結論是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com