【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統計出售價x元和銷售量y杯之間的一組數據如下表所示:
價格x | 5 | 5.5 | 6.5 | 7 |
銷售量y | 12 | 10 | 6 | 4 |
通過分析,發現銷售量y對奶茶的價格x具有線性相關關系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價格應定為多少?
注:在回歸直線y= 中,
,
=
﹣
.
=146.5.
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點,E,F,G分別是BC,CD和SC的中點.求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司研究一款暢銷保險產品的保費與銷量之間的關系,根據歷史經驗,若每份保單的保費在元的基礎上每增加
元,對應的銷量
(萬份)與
(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下
組
與
的對應數據:
(1)試據此求出關于
的線性回歸方程
;
(2)若把回歸方程當做與
的線性關系,試計算每份保單的保費定為多少元此產品的保費總收入最大,并求出該最大值;
參考公式:
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2 ,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)已知二面角A﹣PB﹣D的余弦值為 ,若E為PB的中點,求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓 (a>b>0)的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1 , F2為頂點的三角形的周長為
.一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2 , 證明k1k2=1;
(3)探究 是否是個定值,若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣1+x﹣2(e為自然對數的底數).g(x)=x2﹣ax﹣a+3.若存在實數x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實數a的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,A(2,4),B(﹣1,2),C,D為動點,
(1)若C(3,1),求平行四邊形ABCD的兩條對角線的長度
(2)若C(a,b),且 ,求
取得最小值時a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的三個內角A,B,C的對邊長分別為a,b,c,R是△ABC的外接圓半徑,有下列四個條件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB
④
有兩個結論:甲:△ABC是等邊三角形.乙:△ABC是等腰直角三角形.
請你選取給定的四個條件中的兩個為條件,兩個結論中的一個為結論,寫出一個你認為正確的命題 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的導函數的圖像與直線
平行,且
在
處取得極小值
.設
.
(1)若曲線上的點
到點
的距離的最小值為
,求
的值;
(2)如何取值時,函數
存在零點,并求出零點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com