【題目】如圖,有一直徑為8米的半圓形空地,現計劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉光源滿足果樹生長的需要,該光源照射范圍是 ,點E,F在直徑AB上,且
.
(1)若 ,求AE的長;
(2)設∠ACE=α,求該空地種植果樹的最大面積.
【答案】
(1)解:由已知得△ABC為直角三角形,因為AB=8, ,
所以 ,AC=4,
在△ACE中,由余弦定理:CE2=AC2+AE2﹣2ACAEcosA,且 ,
所以13=16+AE2﹣4AE,
解得AE=1或AE=3
(2)解:因為 ,
,
所以∠ACE=α ,
所以 ,
在△ACF中由正弦定理得: ,
所以 ,
在△ACE中,由正弦定理得: ,
所以 ,
由于: ,
因為 ,所以
,所以
,
所以當 時,S△ECF取最大值為
【解析】(1)由已知利用余弦定理,即可求AE的長;(2)設∠ACE=α,求出CF,CE,利用三角形面積公式可求S△CEF , 求出最大值,即可求該空地產生最大經濟價值時種植甲種水果的面積.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:
;
;
.
科目:高中數學 來源: 題型:
【題目】已知數列{an}前n項和為Sn .
(1)若Sn=2n﹣1,求數列{an}的通項公式;
(2)若a1= ,Sn=anan+1 , an≠0,求數列{an}的通項公式;
(3)設無窮數列{an}是各項都為正數的等差數列,是否存在無窮等比數列{bn},使得an+1=anbn恒成立?若存在,求出所有滿足條件的數列{bn}的通項公式;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點E是側棱BB1上的一個動點.有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2 .
其中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0外切. (Ⅰ)求實數m的值;
(Ⅱ)若圓C1與x軸的正半軸交于點A,與y軸的正半軸交于點B,P為第三象限內一點,且點P在圓C1上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知銳角三角形的兩個內角A,B滿足 ,則有( )
A.sin2A﹣cosB=0
B.sin2A+cosB=0
C.sin2A+sinB=0
D.sin2A﹣sinB=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數據的莖葉圖如圖.
(1)根據莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表是某廠的產量x與成本y的一組數據:
產量x(千件) | 2 | 3 | 5 | 6 |
成本y(萬元) | 7 | 8 | 9 | 12 |
(Ⅰ)根據表中數據,求出回歸直線的方程 =
x
(其中
=
,
=
﹣
)
(Ⅱ)預計產量為8千件時的成本.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com