精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線的參數方程為為參數),,為曲線上的一動點.

(I)求動點對應的參數從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標;若不存在,說明理由.

【答案】(Ⅰ);(Ⅱ)存在點滿足題意,且.

【解析】

(Ⅰ)先判斷出線段所掃過的圖形由一三角形和一弓形組成,然后通過分析圖形的特征并結合扇形的面積可得所求.(Ⅱ)設,由題意得,然后根據點在曲線上求出后可得點的坐標.

(Ⅰ)設時對應的點為時對應的點為,由題意得軸,

則線段掃過的面積.

(Ⅱ)設, ,

為線段的中點,

,

在曲線上,曲線的直角坐標方程為,

,

整理得,

,

∴存在點滿足題意,且點的坐標為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且拋物線的準線被橢圓截得的弦長為1,是直線上一點,過點且與垂直的直線交橢圓于兩點.

1)求橢圓的標準方程;

2)設直線的斜率分別為,求證:成等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是橢圓的左焦點,O為坐標原點,為橢圓上的點.

1)求橢圓的標準方程;

2)若點都在橢圓上,且中點在線段(不包括端點)上,求面積的最大值,及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,平面,,,的中點.

(Ⅰ)證明:平面平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三邊BC,CA,AB的中點分別是D(53),E(42),F(1,1).

1)求△ABC的邊AB所在直線的方程及點A的坐標;

2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知互不重合的直線,,互不重合的平面,,給出下列四個命題,錯誤的命題是(

A.,,則

B.,,,則

C.,,,則

D.,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取名學生,將他們的期中考試數學成績(滿分分,成績均為不低于分的整數)分成六段:,…,后得到如圖的頻率分布直方圖.

(1)求圖中實數的值;

(2)若從數學成績在兩個分數段內的學生中隨機選取兩名學生,求這兩名學生的數學成績之差的絕對值不大于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—4:坐標系與參數方程

平面直角坐標系xOy中,曲線C.直線l經過點Pm,0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數方程;

)若直線l與曲線C相交于AB兩點,且|PA·PB|=1,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓軸負半軸相交于點,與軸正半軸相交于點.

1)若過點的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心,半徑為的圓上存在點,使得為坐標原點),求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视