【題目】已知橢圓的中心在原點,焦點在軸上,離心率為
,若拋物線
的焦點與橢圓的一個焦點重合.
(1)求橢圓的標準方程;
(2)過橢圓的左焦點,且斜率為
的直線
交橢圓于
,
兩點,求
的面積.
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資
類產品的收益與投資額的算術平方根成正比.已知投資1萬元時
兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:在四棱錐中,底面
為菱形,且
,
底面
,
,
,
是
上點,且
平面
.
(1)求證: ;(2)求三棱錐
的體積.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根據菱形性質得對角線相互垂直,根據底面
得
,再根據線面垂直判定定理得
面
即可得結果(2)記
與
的交點為
,則BD 為高,三角形POE為底,根據錐體體積公式求體積
試題解析:(1)面
(2)記與
的交點為
,連接
平面
在中:
,
,
,
在中:
,
,則
,即
,
則
【題型】解答題
【結束】
21
【題目】已知橢圓:
的離心率
,且其的短軸長等于
.
(1)求橢圓的標準方程;
(2)如圖,記圓:
,過定點
作相互垂直的直線
和
,直線
(斜率
)與圓
和橢圓
分別交于
、
兩點,直線
與圓
和橢圓
分別交于
、
兩點,若
與
面積之比等于
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 |
|
|
|
|
|
|
晝夜溫差 | ||||||
就診人數 | 16 |
該興趣小組確定的研究方案是:先從這六組數據中選取組,用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是月與
月的兩組數據,請根據
至
月份的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點到定點
的距離和它到直線
的距離的比值為常數
,記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若直線與曲線
相交于不同的兩點
,
,直線
與曲線
相交于不同的兩點
,且
,求以
,
,
,
為頂點的凸四邊形的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸長為
.
(1)求橢圓的方程;
(2)設,
是橢圓
上關于
軸對稱的任意兩個不同的點,連接
交橢圓
于另一點
,證明直線
與
軸相交于定點
;
(3)在(2)的條件下,過點的直線與橢圓
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com