【題目】已知數列{an}滿足a1=a,an+1=2an+ (a,λ∈R).
(1)若λ=-2,數列{an}單調遞增,求實數a的取值范圍;
(2)若a=2,試寫出an≥2對任意的n∈N*成立的充要條件,并證明你的結論.
【答案】見解析
【解析】(1)當λ=-2時,an+1=2an-,由題意知an+1>an,所以an+1-an=an-
>0,解得an>
或-
<an<0,所以a1>
或-
<a1<0.所以實數a的取值范圍為
(-,0)∪(
,+∞).
(2)an≥2對任意的n∈N*成立的充要條件為λ≥-4.
證明如下:必要性:假設an+1=2an+≥2,得λ≥-2a+2an,令f(n)=-2·
+
,由an≥2,可得f(n)max=-4,即λ≥-4.
充分性:用數學歸納法證明:顯然當n=1時,a1≥2成立.
假設當n=k(k≥2)時,ak≥2成立.
當n=k+1時,ak+1=2ak+.
令函數f(x)=2x+,x∈[2,+∞).
①當-4≤λ≤0時,由f′(x)=2->0,知f(x)在區間[2,+∞)上單調遞增,所以ak+1=2ak+
≥4+
≥2.
②當λ>0時,對x∈[2,+∞)總有f(x)=2x+>4>2,所以ak+1=2ak+
>2.
所以當n=k+1時,ak+1≥2成立.
綜上可知,當λ≥-4時,對任意的n∈N*,an≥2成立.
故an≥2對任意的n∈N*成立的充要條件是λ≥-4.
科目:高中數學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學生的數學期末考試成績.
(1)現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績為87分的同學至少有一名被抽中的概率;
(2)學校規定:成績不低于75分的為優秀,請填寫列聯表,并判斷有多大把握認為“成績優秀與教學方式有關”.
甲班 | 乙班 | 合計 | |
優秀 | |||
不優秀 | |||
合計 |
參考公式與臨界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
過橢圓
:
的短軸端點,
分別是圓
與橢圓
上任意兩點,且線段
長度的最大值為3.
(1)求橢圓的方程;
(2)過點作圓
的一條切線交橢圓
于
兩點,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某學校高三年級共800名男生中隨機抽取50人測量身高.據測量,被測學生身高全部介于155 cm到195 cm之間,將測量結果按如下方式分成八組:第一組[155,160);第二組[160,165);…;第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數相同,第六組、第七組、第八組人數依次構成等差數列.
(Ⅰ)估計這所學校高三年級全體男生身高在180 cm以上(含180 cm)的人數;
(Ⅱ)求第六組、第七組的頻率并補充完整頻率分布直方圖(用虛線標出高度);
(III)若從身高屬于第六組和第八組的所有男生中隨機抽取兩人,記他們的身高分別為x、y,求事件“|x-y|≤5”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的圖象在
處的切線方程;
(2)若函數在
上有兩個不同的零點,求實數
的取值范圍;
(3)是否存在實數,使得對任意的
,都有函數
的圖象在
的圖象的下方?若存在,請求出最大整數
的值;若不存在,請說理由.
(參考數據: ,
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態度進行了調查,統計數據如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態度是否有關?并說明理由.
參考公式與臨界值表:K2=.
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某集團為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經調查投入廣告費t(百萬元),可增加銷售額約為-t2+5t(百萬元)(0≤t≤5) (注:收益=銷售額-投放).
(1)若該公司將當年的廣告費控制在3百萬元之內,則應投入多少廣告費,才能使該公司由此獲得的收益最大?
(2)現該公司準備共投入3百萬元,分別用于廣告促銷和技術改造.經預測,每投入技術改造費x(百萬元),可增加的銷售額約為-x3+x2+3x(百萬元).請設計一個資金分配方案,使該公司由此獲得的收益最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心為原點
,離心率
,其中一個焦點的坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當點在橢圓
上運動時,設動點
的運動軌跡為
若點
滿足:
其中
是
上的點.直線
的斜率之積為
,試說明:是否存在兩個定點
,使得
為定值?若存在,求
的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com