精英家教網 > 高中數學 > 題目詳情

【題目】經過多年的運作,雙十一搶購活動已經演變成為整個電商行業的大型集體促銷盛宴.為迎接2014雙十一網購狂歡節,某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在雙十一的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數).已知生產該產品還需投入成本萬元(不含促銷費用),產品的銷售價格定為

元/件,假定廠家的生產能力完全能滿足市場的銷售需求.

(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;

(2)促銷費用投入多少萬元時,廠家的利潤最大?

【答案】(1);(2)時,促銷費用投入1萬元,廠家的利潤最大;當時,促銷費用投入萬元,廠家的利潤最大.

【解析】

(1)由題意知,

代入化簡得:.

(2),

當且僅當時,上式取等號.

時,促銷費用投入1萬元時,廠家的利潤最大;

時,上單調遞增,

所以時,函數有最大值,即促銷費用投入萬元時,廠家的利潤最大.

綜上,當時,促銷費用投入1萬元,廠家的利潤最大;

時,促銷費用投入萬元,廠家的利潤最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數

(1)是函數的一個極值點,試求的單調區間;

(2),是否存在實數a,使得在區間上的最大值為4?若存在,求出實數a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)設橢圓與雙曲線有相同的焦點,是橢圓與雙曲線的公共點,且△的周長為6,求橢圓的方程;我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為盾圓;

2)如圖,已知盾圓的方程為,設盾圓上的任意一點的距離為,到直線的距離為,求證:為定值;

3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為盾圓,設過點的直線與盾圓交于兩點,,,且),試用表示,并求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,其中.

1)若,寫出的單調區間:

2)若函數恰有三個不同的零點,且這些零點之和為-2,求a、b的值;

3)若函數上有四個不同零點,求的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中, // , , 點邊的中點, 將△沿折起,使平面⊥平面,連接, , , 得到如

圖所示的空間幾何體.

(Ⅰ)求證: ⊥平面

(Ⅱ)若,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,四棱錐的底面是正方形,垂直于底面,已知四棱錐的正視圖,如圖2所示.

I)若M的中點,證明:平面;

II)求棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,學校決定利用隨機數表法從中抽取100人進行成績抽樣調查,先將800人按001,002,,800進行編號.

1)如果從第8行第7列的數開始向右讀,請你依次寫出最先檢查的3個人的編號;

(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)抽取的100人的數學與地理的水平測試成績如下表:

成績分為優秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績為良好的共有20+18+4=42

人數

數學

優秀

良好

及格


地理

優秀

7

20

5

良好

9

18

6

及格

a

4

b

若在該樣本中,數學成績優秀率是30%,求a,b的值:

在地理成績及格的學生中,已知求數學成績優秀的人數比及格的人數少的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為

(l)設為參數,若,求直線的參數方程;

2)已知直線與曲線交于,,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,某小區中有條長為50,寬為6.5米的道路ABCD,在路的一側可以停放汽車,已知小型汽車的停車位是一個2.5米寬,5米長的矩形,GHPQ,這樣該段道路可以劃岀10個車位,隨著小區居民汽車擁有量的增加,停車難成為普遍現象.經過各方協商,小區物業擬壓縮綠化,拓寬道路,改變車位方向增加停車位,如圖2,改建后的通行寬度保持不變,GAD的距離不變.

(1)綠化被壓縮的寬度BE與停車位的角度∠HPE有關,為停車方便,要求,寫出關于的函數表達式;

(2)沿用(1)的條件和記號,實際施工時,BE=3,問改造后的停車位增加了多少個?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视