【題目】如圖1,四棱錐的底面
是正方形,
垂直于底面
,已知四棱錐的正視圖,如圖2所示.
(I)若M是的中點,證明:
平面
;
(II)求棱錐的體積.
【答案】(I)證明見解析;(II).
【解析】
(Ⅰ)由正視圖可知,先證明
平面
得到
.由等腰三角形可得
,利用線面垂直的判定定理可得結果; (Ⅱ)在平面PCD內過M作
交CD于N,可得棱錐
的體積,結合棱錐
的體積等于棱錐
的體積,從而可得結果.
(Ⅰ)由正視圖可知,
∵PD⊥平面ABCD,∴ PD⊥BC
又∵ABCD是正方形,∴BC⊥CD.
∵,∴BC⊥平面PCD
∵平面PCD,∴DM⊥BC.
又是等腰三角形,E是斜邊PC的中點,所以∴DM⊥PC
又∵,∴DM⊥平面PBC.
(Ⅱ)在平面PCD內過M作MN//PD交CD于N,所以且
平面ABCD,所以棱錐M-ABD的體積為
又∵棱錐A-BDM的體積等于棱錐M-ABD的體積,
∴棱錐A-BDM的體積等于.
科目:高中數學 來源: 題型:
【題目】《九章算術·均輸》中有如下問題:“今有五人分十錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.錢B.
錢C.
錢D.
錢
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合,集合
,集合
.
(1)用列舉法表示集合C;
(2)設集合C的含n個元素所有子集為,記有限集合M的所有元素和為
,求
的值;
(3)已知集合P、Q是集合C的兩個不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對的個數
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過多年的運作,“雙十一”搶購活動已經演變成為整個電商行業的大型集體促銷盛宴.為迎接2014年“雙十一”網購狂歡節,某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中
,a為正常數).已知生產該產品還需投入成本
萬元(不含促銷費用),產品的銷售價格定為
元/件,假定廠家的生產能力完全能滿足市場的銷售需求.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;
(2)促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數在區間
上的圖象,為了得到這個函數的圖象,只需將
的圖象上的所有的點( )
A.向左平移個長度單位,再把所得各點的橫坐標變為原來的
,縱坐標不變
B.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變
C.向左平移個長度單位,再把所得各點的橫坐標變為原來的
,縱坐標不變
D.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中真命題的序號為(少填或錯填均不得分)______.若一個球的半徑縮小為原來的一半,則其體積縮小為原來的八分之一;②若兩組數據的平均值相等,則它們的標準差也相等;③直線與圓
相切;④若兩個平面都垂直于同一個平面,則這兩個平面平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列滿足:對一切
,有
,其中
是與
無關的常數,稱數列上有界(有上界),并稱
是它的一個上界,對一切
,有
,其中
是與
無關的常數,稱數列下有界(有下界),并稱
是它的一個下界.一個數列既有上界又有下界,則稱為有界數列,常值數列是一個特殊的有界數列.設
,數列
滿足
,
,
.
(1)若數列為常數列,試求實數
、
滿足的等式關系,并求出實數
的取值范圍;
(2)下面四個選項,對一切實數,恒正確的是.(寫出所有正確選項,不需要證明其正確,但需要簡單說明一下為什么不選余下幾個)
A. 當時,
B. 當
時,
C. 當時,
D. 當
時,
(3)若,
,且數列
是有界數列,求
的值及
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com