【題目】已知.
(1)試討論函數的單調性;
(2)若使得
都有
恒成立,且
,求滿足條件的實數
的取值集合.
科目:高中數學 來源: 題型:
【題目】函數的定義域為
,其圖象上任一點
都滿足
.
①函數一定是偶函數;②函數
可能既不是偶函數也不是奇函數;
③函數若是偶函數,則值域是
或
;④函數
可以是奇函數;
⑤函數的值域是
,則
一定是奇函數.
其中正確命題的序號是__________(填上所有正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(1)令,判斷函數
的奇偶性,并說明理由;
(2)令,
的最大值為A,函數
在區間
上單調遞增函數,求
的取值范圍;
(3)令,將函數
的圖像向左平移
個單位,再向上平移1個單位,得到函數
的圖像,對任意
,求
在區間
上零點個數的所有可能值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列的前
項和為
且滿足:
(1)求數列的通項公式;
(2)設求
的值;
(3)是否存在大于2的正整數使得
?若存在,求出所有符合條件的
若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若是函數
的一個極值點,試求
的單調區間;
(2)若且
,是否存在實數a,使得
在區間
上的最大值為4?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知、
為橢圓
(
)和雙曲線
的公共頂點,
、
分為雙曲線和橢圓上不同于
、
的動點,且滿足
,設直線
、
、
、
的斜率分別為
、
、
、
.
(1)求證:點、
、
三點共線;
(2)求的值;
(3)若、
分別為橢圓和雙曲線的右焦點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知
千米,甲火車從
站出發,沿
方向以
千米
小時的速度行駛,同時乙火車從
站出發,沿
方向,以
千米
小時的速度行駛,至
站即停止前行(甲車扔繼續行駛)(兩車的車長忽略不計).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時所用時間為小時,問
為何值時
最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年3月5日,國務院總理李克強作出的政府工作報告中,提到要“懲戒學術不端,力戒學術不端,力戒浮躁之風”.教育部2014年印發的《學術論文抽檢辦法》通知中規定:每篇抽檢的學術論文送3位同行專家進行評議,3位專家中有2位以上(含3位)專家評議意見為“不合格”的學術論文,將認定為“存在問題學術論文”.有且只有1位專家評議意見為“不合格”的學術論文,將再送另外2位同行專家(不同于前3位專家)進行復評,2位復評專家中有1位以上(含1位)專家評議意見為“不合格”的學術論文,將認定為“存在問題學術論文”.設每篇學術論文被每位專家評議為“不合格”的概率均為,且各篇學術論文是否被評議為“不合格”相互獨立.
(1)若,求抽檢一篇學術論文,被認定為“存在問題學術論文”的概率;
(2)現擬定每篇抽檢論文不需要復評的評審費用為900元,需要復評的總評審費用1500元;若某次評審抽檢論文總數為3000篇,求該次評審費用期望的最大值及對應的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com