(本小題滿分12分)
設點到直線
的距離與它到定點
的距離之比為
,并記點
的軌跡為曲線
.
(Ⅰ)求曲線的方程;
(Ⅱ)設,過點
的直線
與曲線
相交于
兩點,當線段
的中點落在由四點
構成的四邊形內(包括邊界)時,求直線
斜率的取值范圍.
(Ⅰ);(Ⅱ)
解析試題分析:(Ⅰ)有題意, ………………2分
整理得,所以曲線
的方程為
………………4分
(Ⅱ)顯然直線的斜率
存在,所以可設直線
的方程為
.
設點的坐標分別為
線段的中點為
,
由
得
由解得
.…(1) …………7分
由韋達定理得,于是
=
,
……………8分
因為,所以點
不可能在
軸的右邊,
又直線,方程分別為
所以點在正方形內(包括邊界)的充要條件為
即
亦即
………………10分
解得,……………(2)
由(1)(2)知,直線斜率的取值范圍是
………………12分
考點:本題考查了圓錐曲線方程的求法及直線與圓錐曲線的位置關系
點評:橢圓的概念和性質,仍將是今后命題的熱點,定值、最值、范圍問題將有所加強;利用直線、弦長、圓錐曲線三者的關系組成的各類試題是解析幾何中長盛不衰的主題,其中求解與相交弦有關的綜合題仍是今后命題的重點;與其它知識的交匯(如向量、不等式)命題將是今后高考命題的一個新的重點、熱點.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系O
中,直線
與拋物線
=2
相交于A、B兩點。
(1)求證:命題“如果直線過點T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
經過點
其離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于A、B兩點,以線段
為鄰邊作平行四邊形OAPB,其中頂點P在橢圓
上,
為坐標原點.求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,右頂點為
,設點
.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段
中點
的軌跡方程;
(3)過原點的直線交橢圓于點
,求
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線
的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線頂點在原點,焦點在x軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)
在平面內,已知橢圓的兩個焦點為
,橢圓的離心率為
,
點是橢圓上任意一點, 且
,
(1)求橢圓的標準方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內接等腰直角三角形
,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com