精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)= 是奇函數,則使f(x)>3成立的x的取值范圍為(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

【答案】C
【解析】解:∵f(x)= 是奇函數,
∴f(﹣x)=﹣f(x)

整理可得,
∴1﹣a2x=a﹣2x
∴a=1,
∴f(x)=
∵f(x))= >3
﹣3= >0,
整理可得, ,
∴1<2x<2
解可得,0<x<1
故選:C
【考點精析】通過靈活運用函數單調性的性質和函數奇偶性的性質,掌握函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集;在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設x取實數,則f(x)與g(x)表示同一個函數的是(
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x的定義域是[0,3],設g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為18,焦距為6,則橢圓的方程為(
A.
B.
C.
D.以上都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017湖南長沙二模】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等極如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

1根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品90%”的規定?

2在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;

3該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017北京西城區5月模擬】某大學為調研學生在,兩家餐廳用餐的滿意度,從在,兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數據,將分數以10為組距分成6組:,,,,得到餐廳分數的頻率分布直方圖,和餐廳分數的頻數分布表:

定義學生對餐廳評價的“滿意度指數”如下:

分數

滿意度指數

在抽樣的100人中,求對餐廳評價“滿意度指數”為0的人數;

從該校在兩家餐廳都用過餐的學生中隨機抽取1人進行調查,試估計其對餐廳評價的“滿意度指數”比對餐廳評價的“滿意度指數”高的概率;

如果從,兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,程序框圖的輸出結果為﹣18,那么判斷框①表示的“條件”應該是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A,B,C,D是直角坐標系中不同的四點,若 (λ∈R), (μ∈R),且 =2,則下列說法正確的是(
A.C可能是線段AB的中點
B.D可能是線段AB的中點
C.C,D可能同時在線段AB上
D.C,D不可能同時在線段AB的延長線上

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】揚州市2016—2017學年度第一學期期末檢測(本小題滿分16分)

如圖,橢圓,圓,過橢圓的上頂點的直線:分別交圓、橢圓于不同的兩點、,

(1)若點求橢圓的方程;

(2)若,求橢圓的離心率的取值范圍

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视