【題目】【2017北京西城區5月模擬】某大學為調研學生在,
兩家餐廳用餐的滿意度,從在
,
兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數據,將分數以10為組距分成6組:,
,
,
,
,
,得到
餐廳分數的頻率分布直方圖,和
餐廳分數的頻數分布表:
定義學生對餐廳評價的“滿意度指數”如下:
分數 | |||
滿意度指數 |
(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數”為0的人數;
(Ⅱ)從該校在,
兩家餐廳都用過餐的學生中隨機抽取1人進行調查,試估計其對
餐廳評價的“滿意度指數”比對
餐廳評價的“滿意度指數”高的概率;
(Ⅲ)如果從,
兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
【答案】(I)人;(II)
;(III)詳見解析.
【解析】
(Ⅰ)由對餐廳評分的頻率分布直方圖,得
對餐廳“滿意度指數”為0的頻率為
,
所以,對餐廳評價“滿意度指數”為0的人數為
.
(Ⅱ)設“對餐廳評價‘滿意度指數’比對
餐廳評價‘滿意度指數’高”為事件
.
記“對餐廳評價‘滿意度指數’為1”為事件
;“對
餐廳評價‘滿意度指數’為2”為事件
;“對
餐廳評價‘滿意度指數’為0”為事件
;“對
餐廳評價‘滿意度指數’為1”為事件
.
所以,
,
由用頻率估計概率得:,
.
因為事件與
相互獨立,其中
,
.
所以
所以該學生對餐廳評價的“滿意度指數”比對
餐廳評價的“滿意度指數”高的概率為
.
(Ⅲ)如果從學生對,
兩家餐廳評價的“滿意度指數”的期望角度看:
餐廳“滿意度指數”
的分布列為:
餐廳“滿意度指數”
的分布列為:
因為;
,
所以,會選擇
餐廳用餐.
注:本題答案不唯一.只要考生言之合理即可.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(1)求證f(x)在(0,+∞)上遞增
(2)若f(x)在[m,n]上的值域是[m,n],求實數a的取值范圍
(3)當f(x)≤2x在(0,+∞)上恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生產甲,乙兩種產品,生產這兩種產品每噸需要的煤,電以及每噸產品的產值如表所示.若每天配給該廠的煤至多56噸,供電至多45千瓦,問該廠如何安排生產,使該廠日產值最大?
用煤/噸 | 用電/千瓦 | 產值/萬元 | |
甲種產品 | 7 | 2 | 8 |
乙種產品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x+2﹣x .
(1)用定義法證明:函數f(x)是區間(0,+∞)上的增函數;
(2)若x∈[﹣1,2],求函數g(x)=2x[f(x)﹣2]﹣3的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】荊州市某重點學校為了了解高一年級學生周末雙休日在家活動情況,打算從高一年級1256名學生中抽取50名進行抽查,若采用下面的方法選。合扔煤唵坞S機抽樣從1256人中剔除6人,剩下1250人再按系統抽樣的方法進行,則每人入選的機會( )
A.不全相等
B.均不相等
C.都相等
D.無法確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an+1=﹣an2+2an , n∈N* , 且a1=0.9,令bn=lg(1﹣an);
(1)求證:數列{bn}是等比數列;
(2)求數列{ }各項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【蘇北四市2016-2017學年度高三年級第一學期期末調研】如圖,在平面直角坐標系中,已知橢圓
的離心率為
,且右焦點
到左準線的距離為
.
(1)求橢圓的標準方程;
(2)設為橢圓
的左頂點,
為橢圓
上位于
軸上方的點,直線
交
軸于點
,過點
作
的垂線,交
軸于點
.
(ⅰ)當直線的斜率為
時,求
的外接圓的方程;
(ⅱ)設直線交橢圓
于另一點
,求
的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com