精英家教網 > 高中數學 > 題目詳情

【題目】

設平面上向量(cosα,sinα) (0°≤α360°),(,)

(1)試證:向量垂直;

(2)當兩個向量的模相等時,求角α.

【答案】(1)見解析;(2)α30°,或α210°.

【解析】

本試題主要是考查了向量的數量積的運算,以及向量的數量積的性質的運用,以及三角函數的變形運用,和三角方程的求解的綜合試題.

1)根據已知要證明向量垂直,則利用數量積為零即可.

2)由||1,||1,且||||,利用模相等,則平方后相等來解得關于角α的方程,然后解三角方程得到角的值.

解: (1)()·()(cosα,sinα)·(cosαsinα)

(cosα)(cosα)(sinα)(sinα)

cos2αsin2α0,

……4

(2)||1,||1,且||||,平方得()2()2,

整理得222240①.

∵||1,||1∴①式化簡得·0,

·(cosα,sinα)·(,)=-cosαsinα0,即cos(60°α)0.

∵0°≤α360°可得α30°,或α210°

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4,CD6,求四邊形EFGH周長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設S、A、B、C四點均在以O為球心的某個球面上。則點O到平面ABC的距離為________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點,拋物線的焦點為,設為拋物線上異于頂點的動點,直線交拋物線于另一點,連結,,并延長,分別交拋物線與點,.

1)當軸時,求直線軸的交點的坐標;

2)設直線,的斜率分別為,,試探索是否為定值?若是,求出此定值;若不是,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體的棱長為1,E,F分別為棱AB上的點,下列說法正確的是________.(填上所有正確命題的序號)

平面

在平面內總存在與平面平行的直線

在側面上的正投影是面積為定值的三角形

EF為中點時,平面截該正方體所得的截面圖形是五邊形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,對任意,有成立.

1)求的通項公式;

2)設,是數列的前項和,求正整數,使得對任意,恒成立;

3)設,是數列的前項和,若對任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—4:坐標系與參數方程

已知曲線的參數方程為為參數),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(Ⅰ)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規限制50≤x≤100(單位:千米/).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14.

(1)求這次行車總費用y關于x的表達式;

(2)x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视