精英家教網 > 高中數學 > 題目詳情

【題目】2020110日,引發新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現抗體.試驗設計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現抗體的概率為,假設每次接種后當天是否出現抗體與上次接種無關.

1)求一個接種周期內出現抗體次數的分布列;

2)已知每天接種一次花費100元,現有以下兩種試驗方案:

①若在一個接種周期內連續2次出現抗體即終止本周期試驗,進行下一接種周期,試驗持續三個接種周期,設此種試驗方式的花費為元;

②若在一個接種周期內出現2次或3次抗體,該周期結束后終止試驗,已知試驗至多持續三個接種周期,設此種試驗方式的花費為元.

比較隨機變量的數學期望的大小.

【答案】1)分布列答案見解析.(2

【解析】

1)由題意可知,隨機變量服從二項分布,故,然后列出分布列即可

2)根據題意分別算出的期望即可.

(1)由題意可知,隨機變量服從二項分布,

.

的分布列為

0

1

2

3

2)①設一個接種周期的接種費用為元,則可能的取值為200300,

因為,

所以.

所以三個接種周期的平均花費為.

②隨機變量可能的取值為300600,900

設事件為“在一個接種周期內出現2次或3次抗體”,由(1)知,.

所以

,

所以.

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列命題正確的是(

A.已知隨機變量,若.

B.已知分類變量的隨機變量的觀察值為,則當的值越大時,有關的可信度越小.

C.在線性回歸模型中,計算其相關指數,則可以理解為:解析變量對預報變量的貢獻率約為

D.若對于變量組統計數據的線性回歸模型中,相關指數.又知殘差平方和為.那么.(注意:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“斗拱”是中國古代建筑中特有的構件,從最初的承重作用,到明清時期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構架間,從枋上加的一層層探出成弓形的承重結構叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )

A. B. C. 53 D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若,則的最小值為__________;若,則的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大型綜藝節目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.為了解某市盲擰魔方愛好者的水平狀況,某興趣小組在全市范圍內隨機抽取了名魔方愛好者進行調查,得到的情況如表所示:

用時(秒)

男性人數

15

22

14

9

女性人數

5

11

17

7

附:,.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

1)將用時低于秒的稱為“熟練盲擰者”,不低于秒的稱為“非熟練盲擰者”.請根據調查數據完成以下列聯表,并判斷是否有的把握認為是否為“熟練盲擰者”與性別有關?

熟練盲擰者

非熟練盲擰者

男性

女性

2)以這名盲擰魔方愛好者的用時不超過秒的頻率,代替全市所有盲擰魔方愛好者的用時不超過秒的概率,每位盲擰魔方愛好者用時是否超過秒相互獨立.那么在該興趣小組在全市范圍內再次隨機抽取名愛好者進行測試,其中用時不超過秒的人數最有可能(即概率最大)是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某生物小組為了研究溫度對某種酶的活性的影響進行了一組實驗,得到的實驗數據經整理得到如下的折線圖:

1)由圖可以看出,這種酶的活性與溫度具有較強的線性相關性,請用相關系數加以說明;

2)求關于的線性回歸方程,并預測當溫度為時,這種酶的活性指標值.(計算結果精確到0.01

參考數據:,,,.

參考公式:相關系數.

回歸直線方程,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數據的中心點();

②回歸直線就是散點圖中經過樣本數據點最多的那條直線;

③當相關性系數時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數就越接近于

其中真命題的個數為(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長為a,線段B1D1上有兩個動點E,F,且EFa,以下結論正確的有( 。

A.ACBE

B.ABEF的距離為定值

C.三棱錐ABEF的體積是正方體ABCDA1B1C1D1體積的

D.異面直線AEBF所成的角為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為拋物線的焦點,,是橢圓上的兩個動點,且線段長度的最大值為4.

(1)求橢圓的標準方程;

(2)若,求面積的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视