【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為
求:(1)甲恰好擊中目標2次的概率;(2)乙至少擊中目標2次的概率;
(3)乙恰好比甲多擊中目標2次的概率
【答案】(1)(2);(3)
【解析】試題分析:(1)由題意知甲射擊三次,每次擊中目標的概率是定值,可以看作是獨立重復試驗,根據獨立重復試驗的公式得到結果;(2)乙射擊三次,每次擊中目標的概率是定值,可以看作是獨立重復試驗,乙至少擊中目標兩次包含擊中兩次和擊中三次,且這兩種情況是互斥的,根據公式得到結果;(3)乙恰好比甲多擊中目標次,包含乙恰擊中目標
次且甲恰擊中目標零次或乙恰擊中目標三次且甲恰擊中目標一次,由題意,
為互斥事件.根據互斥事件和獨立重復試驗公式得到結果.
試題解析:(1)甲恰好擊中目標2次的概率為
(2)乙至少擊中目標2次的概率為
(3)設乙恰好比甲多擊中目標2次為事件A,乙恰好擊中目標2次且甲恰好擊中目標0次為事件B1,乙恰好擊中目標3次且甲恰好擊中目標1次為事件B2,則A=B1+B2,B1,B2為互斥事件
P(A)=P(B1)+P(B2)
所以,乙恰好比甲多擊中目標2次的概率為
科目:高中數學 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業,根據已往經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為
(升),在水底作業10個單位時間,每單位時間用氧量為
(升),返回水面的平均速度為
(米/單位時間),每單位時間用氧量為
(升),記該潛水員在此次考察活動中的總用氧量為
(升).
(1)求關于
的函數關系式;
(2)若,求當下潛速度
取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知右焦點為的橢圓
過點
,且橢圓
關于直線
對稱的圖形過坐標原點.
(1)求橢圓的方程;
(2)過點且不垂直于
軸的直線與橢圓
交于
,
兩點,點
關于
軸的對稱點為
,證明:直線
與
軸的交點為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統計,作出的莖葉圖如下圖:記成績不低于70分者為“成績優良”.
(1)分別計算甲、乙兩班20個樣本中,化學分數前十的平均分,并大致判斷哪種教學方式的教學效果更佳;
(2)由以上統計數據填寫下面列聯表,并判斷能否在犯錯誤的概率不超過
的前提下認為“成績優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
附:
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等式:sin25°+cos235°+sin 5°cos 35°= ,
sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=
,…,由此歸納出對任意角度θ都成立的一個等式,并予以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修44:坐標系與參數方程
在直角坐標系中,直線
經過點
,其傾斜角為
,在以原點
為極點,
軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為
.
(Ⅰ)若直線與曲線C有公共點,求
的取值范圍;
(Ⅱ)設為曲線C上任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求實數m的取值范圍;
(2)當x∈R時,不存在元素x使x∈A與x∈B同時成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的中心在坐標原點,焦點在
軸上,焦點到短軸端點的距離為2,離心率為
.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓
交于
,
兩點且
,是否存在以原點
為圓心的定圓與直線
相切?若存在求出定圓的方程;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com