【題目】為推動乒乓球運動的發展,某乒乓球比賽允許不同協會的運動員組隊參加. 現有來自甲協會的運動員3名,其中種子選手2名;乙協會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協會”求事件
發生的概率
(2)設為選出的4人中種子選手的人數,求隨機變量
的分布列和數學期望
【答案】
(1)
(2)
隨機變量的分布列為
X | 1 | 2 | 3 | 4 |
P |
【解析】(1)由已知,有所以時間
發生的概率為
(2)隨機變量的所有可能取值為
.
所以隨機變量
的分布列為
X | 1 | 2 | 3 | 4 |
P |
所以隨機變量的數字期望
【考點精析】通過靈活運用互斥事件與對立事件和離散型隨機變量及其分布列,掌握互斥事件是指事件A與事件B在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件A發生且事件B不發生;(2)事件A不發生且事件B發生;(3)事件A與事件B同時不發生;而對立事件是指事件A與事件B有且僅有一個發生,其包括兩種情形;(1)事件A發生B不發生;(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,BAD=
,AB=BC=1,
AD=2, E是AD的中點,0是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖2.
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖北)已知數列的各項均為正數,
,
為自然對數的底數.
(1)求函數的單調區間,并比較
與
的大小;
(2)計算 ,
,
, 由此推測計算
的公式,并給出證明;
(3)令 , 數列
,
的前
項和分別記為
,
, 證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若n是一個三位正整數,且n的個位數字大于十位數字,十位數字大于百位數字,則稱n為“三位遞增數”(如137,359,567等).在某次數學趣味活動中,每位參加者需從所有的“三位遞增數”中隨機抽取1個數,且只能抽取一次.得分規則如下:若抽取的“三位遞增數”的三個數字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個位數字是5的“三位遞增數” ;
(2)若甲參加活動,求甲得分X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖北)一種畫橢圓的工具如圖1所示.是滑槽
的中點,短桿ON可繞O轉動,長桿MN通過N處鉸鏈
與ON連接,MN上的栓子D可沿滑槽AB滑動,且,
.當栓子D在滑槽AB內作往復運動時,帶動N繞
轉動,M處的筆尖畫出的橢圓記為C.以O為原點,AB所在的直線為
軸建立如圖2所示的平面直角坐標系.
(1)(Ⅰ)求橢圓C的方程;
(2)(Ⅱ)設動直線與兩定直線
和
分別交于
兩點.若直線
總與橢圓
有且只有一個公共點,試探究:
的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列
是遞增的等比數列,a1+a4=9,a2a3=8,則數列
的前n項和等于
,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數列,即a1=1,a4=8,即q3=
=8,所以q=2.因而數列
的前n項和為 。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com