【題目】已知函數,
,
(1)若函數的兩個極值點為
,求函數
的解析式;
(2)在(1)的條件下,求函數的圖象過點
的切線方程;
(3)對一切恒成立,求實數
的取值范圍。
【答案】(1) (2)x+y-2=0 (3) a≥-2
【解析】函數的兩個極值點處導數為0 ,g’(x)=3x2+2ax-1帶入
即可;
要求函數的圖象過點
的切線方程,先求函數在點
處的導數即斜率,在用點斜式求出方程;恒成立求實數
的取值范圍時,一般分離參數,2a≥2lnx-3x-
再在最值處成立即可。
解:(1)g’(x)=3x2+2ax-1由題意:
(2)由(1)可得:g(x)=x3-x2-x+2(1o)若P為切點,則切線方程為:y=1
2 o若P不是切點,設切點Q(x0,y0)∴切線方程為y-y0=(3x02-2x0-1)(x-x0)
1-(x03-x02-x0+2)=(3x02-2x0-1)(1-x0) 2x0(x0-1)2=0 ∴x0=0 ∴切點(0,2)
∴切線方程:x+y-2=0
(3)2xlnx≤3x2+2ax-1+2 ∴2ax≥2xlnx-3x2-1 ∵x>0 ∴2a≥2lnx-3x-
令ln(x)=2lnx-3x-
x(0,1)1(1,+∞)
h’(x)+0-
h(x)↑極大值↓
∴h(x) ≤h(1)=-4 ∴2a≥-4 a≥-2
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
短軸頂點在圓
上.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點,若斜率為1的直線
與橢圓
相交于
兩點,試探究以
為底邊的等腰三角形
是否存在?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數;
(2)若在這10個賣場中,乙型號電視機銷售量的平均數為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據莖葉圖推斷b為何值時,
達到最值.
(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1) 若函數f(x)=|4x-x2|+a有4個零點,求實數a的取值范圍;
(2) 已知函數f(x)=x2+2mx+3m+4.
① 若函數f(x)有且僅有一個零點,求實數m的值;
若函數f(x)有兩個零點且兩個零點均比-1大,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心是坐標原點,焦點在
軸上,離心率為
,又橢圓上任一點到兩焦點的距離和為
.過右焦點
與
軸不垂直的直線
交橢圓于
,
兩點.
(1)求橢圓的方程;
(2)在線段上是否存在點
,使得
?若存在,求出
的取值范圍;若不存在,請
說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關于行駛速度
(千米/小時)的函數解析式可以表示為:
,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校90名專職教師的年齡狀況如下表:
年齡 | 35歲以下 | 35~50歲 | 50歲以上 |
人數 | 45 | 30 | 15 |
現擬采用分層抽樣的方法從這90名專職教師中抽取6名老、中、青教師下鄉支教一年.
(Ⅰ)求從表中三個年齡段中分別抽取的人數;
(Ⅱ)若從抽取的6個教師中再隨機抽取2名到相對更加邊遠的鄉村支教,計算這兩名教師至少有一個年齡是35~50歲教師的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數為4的3件日用品記為,等級系數為5的2件日用品記為
,現從
,
這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數恰好相等的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com