【題目】已知定義域為R的函數是奇函數.
(1)求a,b的值;
(2)解關于t的不等式f(t2-2t)+f(2t2-1)<0.
【答案】(1)2;(2)
【解析】
(1)根據奇函數性質的f(0)=0解得b,再根據f(1)=-f(-1)解得a,(2)先判斷函數f(x)單調性,再根據奇函數性質以及單調性化簡不等式為t2-2t>-2t2+1,解一元二次不等式得結果.
(1)因為f(x)是定義在R上的奇函數,
所以f(0)=0,
即=0,解得b=1,
所以f(x)=.
又由f(1)=-f(-1)知=-
,解得a=2.
(2)由(1)知f(x)==-
+
.
由上式易知f(x)在(-∞,+∞)上為減函數(此處可用定義或導數法證明函數f(x)在R上是減函數).
又因為f(x)是奇函數,所以不等式f(t2-2t)+f(2t2-1)<0等價于f(t2-2t)<-f(2t2-1)=f(-2t2+1).
因為f(x)是減函數,由上式推得t2-2t>-2t2+1,
即3t2-2t-1>0,解不等式可得t>1或t<-,
故原不等式的解集為.
科目:高中數學 來源: 題型:
【題目】小明一家訂閱的晚報會在下午5:30~6:30之間的任何一個時間隨機地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐.
(1)你認為晚報在晚餐開始之前被送到和晚餐開始之后被送到哪一種可能性更大?
(2)晚報在晚餐開始之前被送到的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且S2=11,S5=50,則過點P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個方向向量的坐標可以是( )
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方形的對角線
與
相交于
點,將
沿對角線折起,使得平面
平面
(如圖),則下列命題中正確的是( )
A. 直線直線
,且直線
直線
B. 直線平面
,且直線
平面
C. 平面平面
,且平面
平面
D. 平面平面
,且平面
平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意實數對(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個集合:
①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,直線y=
x為曲線y=f(x)的切線(e為自然對數的底數).
(1)求實數a的值;
(2)用min{m,n}表示m,n中的最小值,設函數g(x)=min{f(x),x﹣ }(x>0),若函數h(x)=g(x)﹣cx2為增函數,求實數c的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com