【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cos θ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
【答案】(1)(x-2)2+y2=4;;(2)2+
.
【解析】
(1)圓C的極坐標方程化為直角坐標方程,直線l的參數方程代入圓C的的直角坐標方程,利用直線參數方程的幾何意義,即可求解;
(2)要求△ABP的面積的最大值,只需求出點P到直線l距離的最大值,將點P坐標設為圓方程的參數形式,利用點到直線的距離公式以及三角函數的有界性,即可求解.
(1)由ρ=4cos θ得ρ2=4ρcos θ,所以x2+y2-4x=0,
所以圓C的直角坐標方程為(x-2)2+y2=4.
設A,B對應的參數分別為t1,t2.
將直線l的參數方程代入圓C:
(x-2)2+y2=4,并整理得t2+t=0,
解得t1=0,t2=-.
所以直線l被圓C截得的弦AB的長為|t1-t2|=.
(2)由題意得,直線l的普通方程為x-y-4=0.
圓C的參數方程為 (θ為參數),
可設圓C上的動點P(2+2cos θ,2sin θ),
則點P到直線l的距離
d=,
當=-1時,d取得最大值,且d的最大值為2+
.
所以S△ABP=×
×(2+
)=2+
,
即△ABP的面積的最大值為2+.
科目:高中數學 來源: 題型:
【題目】千百年來,我國勞動人民在生產實踐中根據云的形狀、走向、速度、厚度、顏色等的變化,總結了豐富的“看云識天氣”的經驗,并將這些經驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區A的100天日落和夜晚天氣,得到如下列聯表:
夜晚天氣 日落云里走 | 下雨 | 未下雨 |
出現 | 25 | 5 |
未出現 | 25 | 45 |
臨界值表 | ||||
P( | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并計算得到,下列小波對地區A天氣判斷不正確的是( )
A.夜晚下雨的概率約為
B.未出現“日落云里走”夜晚下雨的概率約為
C.有的把握認為“‘日落云里走’是否出現”與“當晚是否下雨”有關
D.出現“日落云里走”,有的把握認為夜晚會下雨
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了讓貧困地區的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據自身實際情況,只參與其中的某一項工作.相關統計數據如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數,寫出隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開為了了解哪些人更關注“兩會”,某機構隨機抽取了年齡在15~75歲之間的200人進行調查,并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區間和
內的人分別稱為“青少年人”和“中老年人”經統計“青少年人”和“中老年人”的人數之比為
.其中“青少年人”中有40人關注“兩會”,“中老年人”中關注“兩會”和不關注“兩會”的人數之比是
.
(1)求圖中的值;現釆用分層抽樣在
和
中隨機抽取8名代表,從8人中仼選2人,求2人中至少有1個是“中老年人”的概率是多少?
(2)根據已知條件,完成下面的列聯表,并根據此統計結果判斷:能否有
的把握認為“中老年人”比“青少年人”更加關注“兩會”?
關注 | 不關注 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
參考數據及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內有兩個不同的極值點.
(1)求實數a的取值范圍;
(2)設兩個極值點分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com