精英家教網 > 高中數學 > 題目詳情

【題目】下列四個命題中,真命題的序號有__________.(寫出所有真命題的序號)①若,則“”是“”成立的充分不必要條件;②命題“使得”的否定是 “均有”;③命題“若,則”的否命題是“若,則”;④函數在區間上有且僅有一個零點.

【答案】①②③④

【解析】

根據不等式性質和反例可判斷出①正確;根據含量詞命題的否定可知②正確;根據絕對值不等式的解法可求得③正確;利用導數可得到上單調遞增,再結合零點存在定理可確定零點個數,知④正確.

由不等式性質可知,充分條件成立

時,若,則,必要條件不成立

”是“”的充分不必要條件,①正確

②根據特稱命題的否定,可知原命題的否定為:,均有,②正確

等價于,解得:,可知命題“若,則”的否命題是“若,則”③正確

,則當時, 上單調遞增

上有且僅有一個零點,④正確

本題正確結果:①②③④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,則實數c的取值范圍是(  )

A.(0,1]B.[1,+∞)

C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨機抽取了40輛汽車在經過路段上某點時的車速(km/h),現將其分成六段: , , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現有某汽車途經該點,則其速度低于80km/h的概率約是多少?

(Ⅱ)根據直方圖可知,抽取的40輛汽車經過該點的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內的汽車中任取2輛,求這2輛車車速都在(km/h)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代的《洛書》中記載著世界上最古老的一個幻方:如圖,將1,2,9填入的方格內,使三行,三列和兩條對角線上的三個數字之和都等于15.一般地,將連續的正整數填入個方格中,使得每行,每列和兩條對角線上的數字之和都相等,這個正方形叫做階幻方.階幻方的對角線上的數字之和為,如圖三階幻方的,那么的值為__________ .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知MN分別為線段BB1,A1C的中點,MNAA1,且MA1MC.求證:

1MN平面ABC;

2)平面A1MC⊥平面A1ACC1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出命題:(1)對立事件一定是互斥事件.2)若事件滿足,則為對立事件.3)把、,3張紅桃牌隨機分給甲、乙、丙三人,每人1張,事件甲得紅桃與事件乙得紅桃是對立事件.4)一個人打靶時連續射擊兩次,事件至少有一次中靶的對立事件是兩次都不中靶.其中正確的命題個數為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且PO=OB=1.

(1)若D為線段AC的中點,求證:AC⊥平面PDO;

(2)求三棱錐P-ABC體積的最大值;

(3)若,點E在線段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是公差為2的等差數列,且成等比數列.數列滿足:.

)求數列,的通項公式;

)設數列的前n項和為,且,若對,恒成立,求正整數k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn,等比數列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视