【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
(1)求函數h(x)=f(x)﹣g(x)的定義域;
(2)求使f(x)﹣g(x)>0的x的取值范圍.
【答案】(1)(﹣1,1); (2)(0,1).
【解析】
(1)利用對數的真數大于零列不等式組求解即可;(2)根據對數函數的單調性,結合函數的定義域可得,解不等式組可得結果.
(1)∵f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
∴f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x),(a>1).
要使函數f(x)﹣g(x)有意義,則 ,解得﹣1<x<1,
即函數f(x)﹣g(x)的定義域為(﹣1,1).
(2)由f(x)﹣g(x)>0得f(x)>g(x),
即loga(1+x)>loga(1﹣x),
因為a>1,則 ,即,解得0<x<1.
不等式的解集為(0,1).
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為銳角△ABC三個內角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大;
(Ⅱ)若f(x)= sin
cos
+cos2
,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為
,離心率
,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點為橢圓上的一動點(非長軸端點),
的延長線與橢圓交于
點,
的延長線與橢圓交于
點,若
面積為
,求直線
的方程.
【答案】(Ⅰ)(Ⅱ)
或
【解析】試題分析:(Ⅰ)由題意得,再由
橢圓的方程為
;(Ⅱ)①當直線
斜率不存在時,不妨取
面積為
,不符合題意. ②當直線
斜率存在時,設直線
, 由
得
,再求點
的直線
的距離
點
到直線
的距離為
面積為
∴
或
所求方程為
或
.
試題解析:
(Ⅰ)由題意得,∴
,
∵,∴
,
∴橢圓的方程為.
(Ⅱ)①當直線斜率不存在時,不妨取
,
∴面積為
,不符合題意.
②當直線斜率存在時,設直線
,
由化簡得
,
設,
∴
,
∵點的直線
的距離
,
又是線段
的中點,∴點
到直線
的距離為
,
∴面積為
,
∴,∴
,∴
,∴
或
,
∴直線的方程為
或
.
【題型】解答題
【結束】
25
【題目】已知函數.
(Ⅰ)求函數的單調區間與極值;
(Ⅱ)若,且
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,點(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若
=3,b=3
,求a和c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為和
,且
是
在映射
作用下的象,則下列說法中:
① 映射的值域是
;
② 映射不是一個函數;
③ 映射是函數,且是偶函數;
④ 映射是函數,且單增區間為
,
其中正確說法的序號是___________.
說明:“正三角形ABC沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉,當頂點C落在x軸上時,再以頂點C為中心順時針旋轉,如此繼續.類似地,正三角形ABC可以沿x軸負方向滾動.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B均為銳角,則cosA>sinB是△ABC為鈍角三角形的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的一年收益與投資額成正比,其關系如圖(1);投資股票等風險型產品的一年收益與投資額的算術平方根成正比,其關系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產品的一年收益與投資額的函數關系;
(2)該家庭現有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com