精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為菱形,∠ABC60°,AA1AB,M,N分別為AB,AA1的中點.

1)求證:平面B1NC⊥平面CMN;

2)若AB2,求點N到平面B1MC的距離.

【答案】1)見解析;(2

【解析】

1)推導出AA1⊥平面ABCD,AA1CMCMAB,從而CM⊥平面ABB1A1,進而CMB1N,推導出△A1B1N∽△ANM,從而∠A1B1N=∠ANM,∠A1NB1=∠AMN,進而B1NMN,B1N⊥平面CMN,由此能證明平面B1NC⊥平面CMN.

2)求出點B1到平面CMN的距離為h1,設N到平面B1CM的距離為h2,由,能求出點N到平面B1MC的距離.

1)證明:∵直四棱柱ABCDA1B1C1D1,∴AA1⊥平面ABCD,

CM平面ABCD,∴AA1CM

∵底面ABCD是菱形,∠ABC60°,MAB的中點,

CMAB,

AA1ABAAA1平面ABB1A1,AB平面ABB1A1,

CM⊥平面ABB1A1,

B1N平面ABB1A1,∴CMB1N,

MAB中點,NAA1中點,AA1

,,

∵∠B1A1N=∠NAM90°,∴△A1B1N∽△ANM,

∴∠A1B1N=∠ANM,∠A1NB1=∠AMN,

∴∠A1NB1+ANM90°,∴B1NMN,

MNCMM,∴B1N⊥平面CMN

B1N平面B1NC,∴平面B1NC⊥平面CMN.

2)∵在直四棱柱ABCDA1B1C1D1中,底面ABCD為菱形,∠ABC60°,

AA1AB,AB2M,N分別為ABAA1的中點.

MN,B1M3,B1C,

B1N,

∵底面ABCD是菱形,∠ABC60°,

CM,CN,

由(1)知B1N⊥平面CMN,設點B1到平面CMN的距離為h1,h1,

CN2MN2+CM2,∴,

,

B1M3,∴

N到平面B1CM的距離為h2,

,

,

解得h2.

∴點N到平面B1MC的距離為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫療物資生產企業加班加點生產口罩、防護服、消毒水等防疫物品,保障抗疫一線醫療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產企業在加大生產的同時,狠抓質量管理,不定時抽查口罩質量,該企業質檢人員從所生產的口罩中隨機抽取了100個,將其質量指標值分成以下六組:,,…,,得到如下頻率分布直方圖.

1)求出直方圖中的值;

2)利用樣本估計總體的思想,估計該企業所生產的口罩的質量指標值的平均數和中位數(同一組中的數據用該組區間中點值作代表,中位數精確到0.01);

3)現規定:質量指標值小于70的口罩為二等品,質量指標值不小于70的口罩為一等品.利用分層抽樣的方法從該企業所抽取的100個口罩中抽出5個口罩,并從中再隨機抽取2個作進一步的質量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數, 為參加測試的總人數.現對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:

測試后,從中隨機抽取了10名學生,將他們編號后統計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

(1)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;

(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;

(3)定義統計量,其中為第題的實測難度, 為第題的預估難度(.規定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓E1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線交橢圓EAB兩點.若橢圓E的離心率為,三角形ABF2的周長為4.

1)求橢圓E的方程;

2)設不經過橢圓的中心而平行于弦AB的直線交橢圓E于點C,D,設弦AB,CD的中點分別為MN,證明:OM,N三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】總體由編號為01,02,...39,4040個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表(如下表)第1行的第4列和第5列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為(

60 44 66 44 21

66 06 58 05 62

61 65 54 35 02

42 35 48 96 32

14 52 41 52 48

92 66 22 15 86

96 63 75 41 99

58 42 36 72 24

A.23B.21C.35D.32

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實現有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結合某貧困村水質優良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養殖試驗,試驗后選擇其中一種進行大面積養殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.

1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數為,求的分布列和數學期望;

2)試驗后發現乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進行大面積養殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校在高一年級一班至六班進行了社團活動滿意度調查(結果只有滿意不滿意兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如表:

班號

一班

二班

三班

四班

五班

六班

頻數

4

5

11

8

10

12

滿意人數

3

2

8

5

6

6

現從一班和二班調查對象中隨機選取4人進行追蹤調查,則選中的4人中恰有2人不滿意的概率為___________;若將以上統計數據中學生持滿意態度的頻率視為概率,在高一年級全體學生中隨機抽取3名學生,記其中滿意的人數為X,則隨機變量X的數學期望是___________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视