【題目】某校在高一年級一班至六班進行了“社團活動”滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數 | 4 | 5 | 11 | 8 | 10 | 12 |
滿意人數 | 3 | 2 | 8 | 5 | 6 | 6 |
現從一班和二班調查對象中隨機選取4人進行追蹤調查,則選中的4人中恰有2人不滿意的概率為___________;若將以上統計數據中學生持滿意態度的頻率視為概率,在高一年級全體學生中隨機抽取3名學生,記其中滿意的人數為X,則隨機變量X的數學期望是___________
科目:高中數學 來源: 題型:
【題目】指數是用體重公斤數除以身高米數的平方得出的數字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當
數值大于或等于20.5時,我們說體重較重,當
數值小于20.5時,我們說體重較輕,身高大于或等于
我們說身高較高,身高小于170cm我們說身高較矮.
(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數的數據如散點圖,請根據所得信息,完成下述列聯表,并判斷是否有
的把握認為男生的身高對
指數有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數據如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據最小二乘法的思想與公式求得線性回歸方程為.利用已經求得的線性回歸方程,請完善下列殘差表,并求
(解釋變量(身高)對于預報變量(體重)變化的貢獻值)(保留兩位有效數字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數據,需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發現,該組數據的體重應該為.小明重新根據最小二乘法的思想與公式,已算出
,請在小明所算的基礎上求出男體育特長生的身高與體重的線性回歸方程.
參考數據:
,
,
,
,
參考公式:,
,
,
,
.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,∠ABC=60°,AA1AB,M,N分別為AB,AA1的中點.
(1)求證:平面B1NC⊥平面CMN;
(2)若AB=2,求點N到平面B1MC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)已知點,點
為曲線
上的動點,求線段
的中點
到直線
的距離的最大值.并求此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,過點
,且該橢圓的短軸端點與兩焦點
,
的張角為直角.
(1)求橢圓E的方程;
(2)過點且斜率大于0的直線
與橢圓E相交于點P,Q,直線AP,AQ與y軸相交于M,N兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程;
(Ⅱ)設為曲線
上的點,
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國是茶的故鄉,也是茶文化的發源地.中國茶的發現和利用已有四千七百多年的歷史,且長盛不衰,傳遍全球.為了弘揚中國茶文化,某酒店推出特色茶食品“金萱排骨茶”,為了解每壺“金萱排骨茶”中所放茶葉量克與食客的滿意率
的關系,通過試驗調查研究,發現可選擇函數模型
來擬合
與
的關系,根據以下數據:
茶葉量 | 1 | 2 | 3 | 4 | 5 |
4.34 | 4.36 | 4.44 | 4.45 | 4.51 |
可求得y關于x的回歸方程為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com