精英家教網 > 高中數學 > 題目詳情

【題目】如圖l,在邊長為2的菱形中,于點,將沿折起到的位置,使,如圖2.

(1)求證:平面;

(2)求二面角的余弦值;

(3)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

【答案】(1)證明見解析;(2);(3).

【解析】

(1)由,可得,結合可得到平面,由此得,結合利用線面垂直的判定定理可得結果;(2)以為原點,分別以,,,軸,建立空間直角坐標系,利用向量垂直數量積為零列方程求出平面的法向量,結合平面的法向量為,利用空間向量夾角余弦公式可得結果;(3)假設在線段上存在一點滿足條件,設出點的坐標,結合對應的比例關系,通過兩平面法向量的數量積為零來確定相應的參數值,進而得以確定存在性問題.

1)因為,,

所以平面,

因為平面,

所以,

又因為,,

所以平面BCDE.

2)以E為原點,分別以EB,EDx,y,z軸,建立空間直角坐標系,

,,

所以,

設平面的法向量

,

,得

因為平面,

所以平面的法向量,

,

因為所求二面角為銳角,

所以二面角的余弦值為.

3)假設在線段BD上存在一點P,使得平面平面

,,則

所以,

所以,

設平面的法向量,

,

,得,

因為平面平面,

所以,解得,

所以在線段BD上存在點P,使得平面平面,且.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數有極值.

(1)求的取值范圍;

(2)若處取得極值,且當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓)的左、右焦點為,右頂點為,上頂點為.已知

1)求橢圓的離心率;

2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,點滿足,記點的軌跡為.斜率為的直線過點,且與軌跡相交于兩點.

1)求軌跡的方程;

2)求斜率的取值范圍;

3)在軸上是否存在定點,使得無論直線繞點怎樣轉動,總有成立?如果存在,求出定點;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足,且

(1)求證:數列是等差數列,并求出數列的通項公式;

(2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且.

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的大;

(Ⅲ)已知點在棱上,且異面直線所成角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,ADCD,OAC的中點,EBD的中點.

(1)證明:DO⊥底面ABC;

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線軸的交點為,與的交點為,且

(Ⅰ)求的方程;

(Ⅱ)設過定點的直線與拋物線交于兩點,連接并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4cos ωx·sina(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.

(1)aω的值;

(2)求函數f(x)[0,π]上的單調遞減區間.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视