【題目】【2015高考四川,文21】已知函數f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)設g(x)為f(x)的導函數,討論g(x)的單調性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區間(1,+∞)內有唯一解.
【答案】見解析
【解析】(Ⅰ)由已知,函數f(x)的定義域為(0,+∞)
g(x)=f '(x)=2(x-1-lnx-a)
所以g'(x)=2-
當x∈(0,1)時,g'(x)<0,g(x)單調遞減
當x∈(1,+∞)時,g'(x)>0,g(x)單調遞增
(Ⅱ)由f '(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx
令Φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx
則Φ(1)=1>0,Φ(e)=2(2-e)<0
于是存在x0∈(1,e),使得Φ(x0)=0
令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1)
由u'(x)=1-≥0知,函數u(x)在區間(1,+∞)上單調遞增
故0=u(1)<a0=u(x0)<u(e)=e-2<1
即a0∈(0,1)
當a=a0時,有f '(x0)=0,f(x0)=Φ(x0)=0
再由(Ⅰ)知,f '(x)在區間(1,+∞)上單調遞增
當x∈(1,x0)時,f '(x)<0,從而f(x)>f(x0)=0
當x∈(x0,+∞)時,f '(x)>0,從而f(x)>f(x0)=0
又當x∈(0,1]時,f(x)=(x-a0)2-2xlnx>0
故x∈(0,+∞)時,f(x)≥0
綜上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區間(1,+∞)內有唯一解.
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為
,若每題答對得10分,否則得零分.現該生已抽到三道題(兩理一文),求其所得總分
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017屆廣東省珠海市高三上學期期末考試文數】已知函數的最小值為0,其中
,設
.
(1)求的值;
(2)對任意恒成立,求實數
的取值范圍;
(3)討論方程在
上根的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2014福建,文22】已知函數(
為常數)的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求的值及函數
的極值;
(2)證明:當時,
(3)證明:對任意給定的正數,總存在
,使得當
時,恒有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2014高考陜西版文第21題】設函數.
(1)當(
為自然對數的底數)時,求
的最小值;
(2)討論函數零點的個數;
(3)若對任意恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數(其中
)滿足下列3個條件:
①函數的圖象過坐標原點;
②函數的對稱軸方程為
;
③方程有兩個相等的實數根,
令.
(1)求函數的解析式;
(2)求使不等式恒成立的實數
的取值范圍;
(3)已知函數在
上的最小值為
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線在平面直角坐標系
下的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是
,射線
:
與曲線
交于點
與直線
交于點
,求線段
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com