【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點P(1,1)
(Ⅰ)求圓的方程
(II)直線kx﹣y+3=0與該圓相交于A、B兩點,若點M在圓上,且有向量 (O為坐標原點),求實數k.
【答案】解:(Ⅰ)設圓的方程為(x﹣a)2+(y﹣4a)2=r2
因為直線相切,圓心到直線的距離d= ,
且圓心與切點連線與直線l垂直
則: 可得a=0,r=
,
所以圓的方程為:x2+y2=2.
(II)直線與圓聯立: ,
得:(1+k2)x2+6kx+7=0,
△=8k2﹣28>0,解得.k 或k
,
設A(x1,y1),B(x2,y2),
則: ,
,
,
將M代入圓方程:(x +x2)2+(y1+y2)2=2,
,
求得k=
【解析】(Ⅰ)根據直線與圓相切的位置關系d= r 以及直線垂直斜率之積等于-1可求出a=0,r= ,進而得到圓的方程。
(II)由題意該直線與圓相交于A、B兩點聯立直線與圓的方程可得△>0求出k的取值范圍;再根據韋達定理得出與
的表達式,代入圓的方程正理即得k的值,根據k的取值范圍兩個值全要。
科目:高中數學 來源: 題型:
【題目】為響應國家擴大內需的政策,某廠家擬在2016年舉行某一產品的促銷活動,經調查測算,該產品的年銷量(即該廠的年產量)x萬件與年促銷費用t(t≥0)萬元滿足x=4﹣ (k為常數).如果不搞促銷活動,則該產品的年銷量只能是1萬件.已知2016年生產該產品的固定投入為6萬元,每生產1萬件該產品需要再投入12萬元,廠家將每件產品的銷售價格定為每件產品平均生產投入成本的1.5倍(生產投入成本包括生產固定投入和生產再投入兩部分).
(1)求常數k,并將該廠家2016年該產品的利潤y萬元表示為年促銷費用t萬元的函數;
(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1: +
=1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2:
﹣
=1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2=
,且|F2F4|=
﹣1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一名大學生嘗試開家“網店”銷售一種學習用品,經測算每售出1盒該產品可獲利30元,未售出的商品每盒虧損10元.根據統計資料,得到該商品的月需求量的頻率分布直方圖如圖所示,該同學為此購進180盒該產品,以x(單位:盒,100≤x≤200)表示一個月內的市場需求量,y(單位:元)表示一個月內經銷該產品的利潤.
(1)根據直方圖估計這個月內市場需求量x的平均數;
(2)將y表示為x的函數;
(3)根據直方圖估計這個月利潤不少于3 800元的概率(用頻率近似概率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某創業投資公司擬開發某種新能源產品,估計能獲得萬元到
萬元的投資利益,現準備制定一個對科研課題組的獎勵方案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,且獎金不超過
萬元,同時獎金不超過收益的
.
()請分析函數
是否符合公司要求的獎勵函數模型,并說明原因.
()若該公司采用函數模型
作為獎勵函數模型,試確定最小正整數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com