【題目】已知函數f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區間(1,2)內零點個數并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應的證明.
【答案】解:由題意:F(x)=f(x)﹣g(x),那么:F(x)=xlnx﹣ .定義域為(0,+∞)
F′(x)=1+lnx+ ,由題設x∈(1,2),故F′(x)>0,即F(x)在區間(1,2)上是增函數.(1,2)是單調增區間.那么:F(1)=ln1﹣
=
<0,F(2)=2ln2﹣
>0,并且F(x)在(1,2)上連續的,故根據零點定理,有F(x)在區間(1,2)有且僅有唯一實根,即一個零點.
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內的零點為x0 , 由f(x)=xlnx,當0<x≤1時,f(x)≤0,而g(x)= >0,故f(x)<g(x);
由(Ⅰ)可知F′(x)=1+lnx+ ,當x>1時,F′(x)>0,存在零點x0∈(1,2),不然有:F(x0)=f(x0)﹣g(x0)=0,故1<x<x0時,f(x)<g(x);當x>x0時,f(x)>g(x);
而此得到m(x)= ,
顯然:當1<x<x0時,m′(x)=1+lnx恒大于0,m(x)是單增函數.
當x>x0時,m′(x)= 恒小于0,m(x)是單減函數.
m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),則x1∈(1,x0),x2∈(x0 , +∞),
顯然:當x2→+∞時,x1+x2>2x0 .
要證明x1+x2>2x0 , 即可證明x2>2x0﹣x1>x0 , 而m(x)在x>x0時是單減函數.故證m(x2)<m(2x0﹣x1).
又由m(x1)=m(x2),即可證:m(x1)<m(2x0﹣x1).即x1lnx1< ,(構造思想)
令h(x)=xlnx﹣ ,由(1<x<x0).其中h(x0)=0,
那么:h′(x)=1+lnx+ ﹣
,
記φ(t)= ,則φ′(t)=
,當t∈(0,1)時,φ′(t)>0;當t>1時,φ′(t)<0;故φ(t)max=
;
而φ(t)>0;故 >φ(t)>0,而2x0﹣x>0,從而有:
<0;
因此:h′(x)=1+lnx+ ﹣
>0,即h(x)單增,從而1<x<x0時,h(x)<h(x0)=0.
即x1lnx1< 成立.
故得:x1+x2>2x0 .
【解析】(Ⅰ)對F(x)求導,利用x∈(1,2)判定導函數的符號,進而得到函數的單調性,在利用零點存在定理進行證明.(Ⅱ)先由x的范圍討論f(x),g(x)的大小,確定之間的關系式m(x),在判斷x1+x2與2x0的大小,可以利用分析法對其進行證明.
【考點精析】本題主要考查了函數的極值與導數和函數的零點與方程根的關系的相關知識點,需要掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值;二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】將號碼分別為1、2、…、9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球.其號碼為a,放回后,乙從此袋中再摸出一個球,其號碼為b,則使不等式a-2b+10>0成立的事件發生的概率等于________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
(1)討論的單調區間和極值;
(2)將函數的圖象向下平移1個單位后得到
的圖象,且
為自然對數的底數)和
是函數
的兩個不同的零點,求
的值并證明:
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個數為集合A兩元素和的容量,用L(A)表示.若數列{an}是公差不為0的等差數列,設集合A={a1 , a2 , a3 , …,a2016},則L(A)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx+φ)+1()的最小正周期為π,且
.
(1)求ω和φ的值;
(2)函數f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數g(x)的圖象,
①求函數g(x)的單調增區間;
②求函數g(x)在的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知實數a>0,b>0,函數f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設函數g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(x)<f(x),求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[﹣ ,
]的函數f(x)=sinx(cosx+1)﹣ax,若y=f(x)僅有一個零點,則實數a的取值范圍是( )
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣ ,
)
D.(﹣∞,﹣ ]∪(
,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,求{bn}的前n項和.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com