精英家教網 > 高中數學 > 題目詳情

【題目】已知各項均為正數的數列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,求{bn}的前n項和.

【答案】
(1)解:∵6Sn=(an+1)(an+2),

∴6Sn+1=(an+1+1)(an+1+2),

∴(an+an1)(an﹣an1﹣3)=0,

∵an>0,

∴an﹣an1=3,

∴{an}為等差數列

∵6S1=(a1+1)(a1+2),

∵a1>1,

∴a1=2,

∴an=3n﹣1


(2)解:bn= = = ),

∴{bn}的前n項和為 )=


【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),兩式作差,即可證明{an}為等差數列,從而求出an . (2)由an=3n﹣1,推導出bn= ),由此利用裂項求和法能求出數列{bn}的前n.
【考點精析】根據題目的已知條件,利用數列的前n項和和數列的通項公式的相關知識可以得到問題的答案,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx,g(x)=
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區間(1,2)內零點個數并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應的證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體, 分別是棱的中點, 為棱上一點且異面直線所成角的余弦值為.

1)證明: 的中點;

2)求平面與平面所成銳二面角的余弦值.

【答案】1見解析2

【解析】試題分析:1為坐標原點,建立如圖所示的空間直角坐標系,不妨令正方體的棱長為2,利用,解得,即可證得;

2)分別求得平面與平面的法向量,利用求解即可.

試題解析:

1)證明:以為坐標原點,建立如圖所示的空間直角坐標系.

不妨令正方體的棱長為2,

, , ,

, ,

所以 ,

所以,解得舍去),即的中點.

2)解:由(1)可得, ,

是平面的法向量,

.,.

易得平面的一個法向量為,

所以.

所以所求銳二面角的余弦值為.

點睛:空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.

型】解答
束】
22

【題目】已知橢圓的短軸長為2,且橢圓過點.

1)求橢圓的方程;

2)設直線過定點,且斜率為,若橢圓上存在兩點關于直線對稱, 為坐標原點,的取值范圍及面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且

(1)判斷函數的奇偶性;

(2) 判斷函數(1,+)上的單調性,并用定義證明你的結論;

(3),求實數a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓錐OO1的體積為π.設它的底面半徑為x,側面積為S

(1)試寫出S關于x的函數關系式;

(2)當圓錐底面半徑x為多少時,圓錐的側面積最小?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極小值10,則的值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,是定義域為的奇函數.

(1)確定的值;

(2)若,函數,,求的最小值;

(3)若,是否存在正整數,使得恒成立?若存在,請求出所有的正整數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某機構在某一學校隨機抽取30名學生參加環保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數為me , 眾數為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于區間,若函數同時滿足:①上是單調函數;②函數,的值域是,則稱區間為函數的“保值”區間.

(1)求函數的所有“保值”區間.

(2)函數是否存在“保值”區間?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视