【題目】對于區間,若函數
同時滿足:①
在
上是單調函數;②函數
,
的值域是
,則稱區間
為函數
的“保值”區間.
(1)求函數的所有“保值”區間.
(2)函數是否存在“保值”區間?若存在,求出
的取值范圍;若不存在,說明理由.
【答案】(1);(2)
的取值范圍是
.
【解析】分析:(1)由已知中“保值”區間的定義,結合函數的值域是
,我們可得
,從而函數
在區間
上單調遞增,故有
,結合
即可得到函數函數
的“保值”區間;(2)由已知中“保值”區間的定義,我們分函數
在區間
上單調遞減,和函數
在區間
上單調遞增,兩種情況分類討論,分別將
用
或
表示,利用二次函數配方法可得到結論.
詳解:(1)因為函數的值域是
,且
在
的最后綜合討論結果,即可得到值域是
,
所以,所以
,從而函數
在區間
上單調遞增,
故有,解得
.
又,所以
.
所以函數的“保值”區間為
.
(2)若函數存在“保值”區間,則有:
①若,此時函數
在區間
上單調遞減,
所以,消去
得
,整理得
.
因為,所以
,即
.
又,所以
.
因為
,
所以.
②若,此時函數
在區間
上單調遞增,
所以,消去
得
,整理得
.
因為,所以
,即
.
又,所以
.
因為
,
所以.
綜合①、②得,函數存在“保值”區間,此時
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
=
=
=
分別在
上,
,現將四邊形
沿
折起,使
.
(1)若,在折疊后的線段
上是否存在一點
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,函數
的最小值為
.
(1)當時,求
的值;
(2)求;
(3)已知函數為定義在上的增函數,且對任意的
都滿足
,問:是否存在這樣的實數
,使不等式
對所有
恒成立,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列
滿足
,
,
.
(1)求的通項公式;
(2)求和: .
【答案】(1);(2)
.
【解析】試題分析:(1)根據等差數列的
,
,列出關于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數列
的通項公式;(2)利用已知條件根據題意列出關于首項
,公比
的方程組,解得
、
的值,求出數列
的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實數
的取值范圍;
(2)若是
的充分不必要條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享汽車的出現為我們的出行帶來了極大的便利,當然也為投資商帶來了豐厚的利潤,F某公司瞄準這一市場,準備投放共享汽車。該公司取得了在個省份投放共享汽車的經營權,計劃前期一次性投入
元. 設在每個省投放共享汽車的市的數量相同(假設每個省的市的數量足夠多),每個市都投放
輛共享汽車.由于各個市的多種因素的差異,在第
個市的每輛共享汽車的管理成本為(
)元(其中
為常數).經測算,若每個省在
個市投放共享汽車,則該公司每輛共享汽車的平均綜合管理費用為
元.(本題中不考慮共享汽車本身的費用)
注:綜合管理費用=前期一次性投入的費用+所有共享汽車的管理費用,平均綜合管理費用=綜合管理費用÷共享汽車總數.
(1)求的值;
(2)問要使該公司每輛共享汽車的平均綜合管理費用最低,則每個省有幾個市投放共享汽車?此時每輛共享汽車的平均綜合管理費用為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在邊長為12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分別交BB1,CC1于點P,Q,將該正方形沿BB1、CC1折疊,使得A'A1'與AA1重合,構成如圖2所示的三棱柱ABC﹣A1B1C1.
(1)求三棱錐P﹣ABC與三棱錐Q﹣PAC的體積之和;
(2)求直線AQ與平面BCC1B1所成角的正弦值;
(3)求三棱錐Q﹣ABC的外接球半徑r.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com