【題目】已知函數.
(1)求的最小正周期;
(2)求的最值及取最值時相應的x的值;
(3)求函數在
的單調遞增區間.
科目:高中數學 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動場所,現有一塊矩形草坪如下圖所示,已知:
米,
米,擬在這塊草坪內鋪設三條小路
、
和
,要求點
是
的中點,點
在邊
上,點
在邊
時上,且
.
(1)設,試求
的周長
關于
的函數解析式,并求出此函數的定義域;
(2)經核算,三條路每米鋪設費用均為元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ex-e-x.
(1)判斷此函數的奇偶性,并說明理由;
(2)判斷此函數的單調性(不需要證明);
(3)求不等式f(2x-1)+f(-3)<0的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
記x表示1臺機器在三年使用期內需更換的易損零件數,y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數.
(Ⅰ)若=19,求y與x的函數解析式;
(Ⅱ)若要求“需更換的易損零件數不大于”的頻率不小于0.5,求
的最小值;
(Ⅲ)假設這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買19個還是20個易損零件?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數的部分圖象.
(1)求函數的表達式;
(2)把函數的圖象的周期擴大為原來的兩倍,然后向右平移
個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數
的圖象.若對任意的
,方程
在區間
上至多有一個解,求正數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經濟價值是種植乙水果經濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉光源滿足甲水果生長的需要,該光源照射范圍是
,點
在直徑
上,且
.
(1)若米,求
的長;
(2)設, 求該空地產生最大經濟價值時種植甲種水果的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com