【題目】已知時,函數
有極值
(1)求實數的值;
(2)若方程有3個實數根,求實數
的取值范圍。
【答案】(1);(2)
【解析】
(1)先求導數,根據f(1)=-2,f′(1)=0列出方程求出a,b;
(2)由(1)所求解析式可得f′(x),利用導數可得f(x)的單調區間及極值,根據f(x)的圖象的大致形狀即可求得k的范圍;
(1)因為,所以f′(x)=3ax2+b.
又因為當x=1時,f(x)的極值為-2,所以,
解得a=1,b=-3.
(2)由(1)可得,f′(x)=3x2-3=3(x+1)(x﹣1),
令f′(x)=0,得x=±1,
當x<﹣1或x>1時f′(x)>0,f(x)單調遞增,當﹣1<x<1時,f′(x)<0,f(x)單調遞減;
所以當x=﹣1時f(x)取得極大值,f(﹣1),當x=1時f(x)取得極小值,f(1)
,大致圖像如圖:
要使方程f(x)=k有3個解,只需k
.
故實數k的取值范圍為(-2,2).
科目:高中數學 來源: 題型:
【題目】已知函數(
>0)的部分圖象如圖所示,A,B分別是這部分圖象上的最高點、最低點,
為坐標原點,若
·
=0,
則下列結論:①函數
是周期為4的奇函數;②函數
是周期為4的偶函數;③函數
的最大值是
;④函數
向左平移
個單位后得到的函數圖象關于原點對稱;其中錯誤命題的個數是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
(1)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求 |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
,離心率為
,過
的直線
與橢圓
交于
兩點,且
的周長為8.
(1)求橢圓的方程;
(2)直線過點
,且與橢圓
交于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2021年我省將實施新高考,新高考“依據統一高考成績、高中學業水平考試成績,參考高中學生綜合素質評價信息”進行人才選拔。我校2018級高一年級一個學習興趣小組進行社會實踐活動,決定對某商場銷售的商品A進行市場銷售量調研,通過對該商品一個階段的調研得知,發現該商品每日的銷售量(單位:百件)與銷售價格
(元/件)近似滿足關系式
,其中
為常數
已知銷售價格為3元/件時,每日可售出該商品10百件。
(1)求函數的解析式;
(2)若該商品A的成本為2元/件,根據調研結果請你試確定該商品銷售價格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過
的包裹,除
收費10元之外,超過
的部分,每超出
(不足
,按
計算)需再收5元.該公司將最近承攬的100件包裹的重量統計如下:
公司對近60天,每天攬件數量統計如下表:
以上數據已做近似處理,并將頻率視為概率.
(1)計算該公司未來3天內恰有2天攬件數在之間的概率;
(2)①估計該公司對每件包裹收取的快遞費的平均值;
②公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員3人,每人每天攬件不超過150件,工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數學期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的兩條相鄰對稱軸之間的距離為
.
(1)求的值;
(2)將函數的圖象向左平移
個單位,再將所得函數的圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數
的圖象,若函數
在區間
上存在零點,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com