精英家教網 > 高中數學 > 題目詳情

【題目】定義2×2矩陣 =a1a4﹣a2a3 , 若f(x)= ,則f(x)的圖象向右平移 個單位得到函數g(x),則函數g(x)解析式為( )
A.g(x)=﹣2cos2x
B.g(x)=﹣2sin2x
C.
D.

【答案】A
【解析】解:由題意可得f(x)= =cos2x﹣sin2x﹣ cos( +2x)
=cos2x+ sin2x=2cos(2x﹣ ),
則f(x)的圖象向右平移 個單位得到函數g(x)=2cos[2(x﹣ )﹣ ]=2 cos(2x﹣π)=﹣2cos2x,
故選:A.
【考點精析】認真審題,首先需要了解函數y=Asin(ωx+φ)的圖象變換(圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】橢圓4x2+9y2=144內有一點P(3,2)過點P的弦恰好以P為中點,那么這弦所在直線的方程為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項的和記為Sn . 如果a4=﹣12,a8=﹣4.
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
(1)求函數f(x)的單調增區間;
(2)若f( )= ,f( )= ,且α、β∈(﹣ ),求cos(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間為了規定工時定額,需要確定加工某零件所花費的時間,為此做了四次實驗,得到的數據如表:

零件的個數x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5


(1)在給定的坐標系中畫出表中數據的散點圖;

(2)求出y關于x的線性回歸方程y= x+ ,并在坐標系中畫出回歸直線;
(3)試預測加工6個零件需要多少時間?
(注: = , =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐S﹣ABCD中,SA⊥面ABCD,若四邊形ABCD為邊長為2的正方形,SA=3,則此四棱錐外接球的表面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數x滿足
(Ⅰ)若a=1,且p∧q為真,求實數x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (其中 ).

(1)若函數上為增函數,求實數的取值范圍;

(2)當時,求函數上的最大值和最小值;

(3)當時,求證:對于任意大于1的正整數,都有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(2)現往袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和不大于4的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视