精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.
(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

【答案】(Ⅰ)證明:如圖,

取AC中點O,連接PO,BO,
∵PA=PC,∴PO⊥AC,
又∵底面ABC為正三角形,∴BO⊥AC,
∵PO∩OB=O,∴AC⊥平面POB,則AC⊥PB;
(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,
PO⊥AC,∴PO⊥平面ABC,
以O為原點,分別以OA、OB、OP所在直線為x、y、z軸建立空間直角坐標系,
∵AC=PC=2,∴P(0,0, ),B(0, ,0),C(﹣1,0,0), ,

設平面PBC的一個法向量為 ,
,取y=﹣1,得 ,
是平面PAC的一個法向量,
∴cos< >=
∴二面角A﹣PC﹣B的余弦值為
【解析】(Ⅰ)取AC中點O,連接PO,BO,由等腰三角形的性質可得PO⊥AC,BO⊥AC,再由線面垂直的判定可得AC⊥平面POB,則AC⊥PB;(Ⅱ)由平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,可得PO⊥平面ABC,以O為原點,分別以OA、OB、OP所在直線為x、y、z軸建立空間直角坐標系,然后分別求出平面PBC與平面PAC的一個法向量,利用兩法向量所成角的余弦值求得二面角A﹣PC﹣B的余弦值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 的定義域為R.
(Ⅰ)求m的取值范圍;
(Ⅱ)若m的最大值為n,解關于x的不等式:|x﹣3|﹣2x≤2n﹣4.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2(f'(x)+ )在區間(t,3)上總不是單調函數,求m的取值范圍;
(Ⅲ)求證: × × ×…× (n≥2,n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),設方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數分別為m,n,t,則m+n+t=(
A.9
B.13
C.17
D.21

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[不等式選講]

設函數f(x)=a(x﹣1).
(Ⅰ)當a=1時,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)設|a|≤1,當|x|≤1時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 R上的奇函數, ,且對任意 都有 成立,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年1月某校高三年級1600名學生參加了教育局組織的期末統考,已知數學考試成績X~N(100,σ2)(試卷滿分為150分).統計結果顯示數學考試成績在80分到120分之間的人數約為總人數的 ,則此次統考中成績不低于120分的學生人數約為(
A.80
B.100
C.120
D.200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xoy 中,直線l的參數方程為 ,(t為參數).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點o為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ. (Ⅰ)求圓C在直角坐標系中的方程;
(Ⅱ)若圓C與直線l相切,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式m2﹣m<f(x),x∈R都成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视