精英家教網 > 高中數學 > 題目詳情
已知函數單調遞增,則實數的取值范圍為( )
A.B.C.D.

分析:由題意可求得,f′(x)= ,利用f(x)= 在(0, )單調遞增,可得mcosx≤1,x∈(0,),從而可求得實數m的取值范圍.
解:由題意得:f′(x)==,
∵f(x)=在(0,)單調遞增,
∴f′(x)≥0,x∈(0,),
∴1-mcosx≥0,x∈(0,),即mcosx≤1,
∵x∈(0,),
∴cosx>0,
∴m≤,x∈(0,),
∴m≤1.
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

將函數y="sin" x的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數解析式是(  )
A.y=sin(2x-)B.y=sin(2x-)
C.y=sin(x-)D.y=sin(x-)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,
(1)設是函數圖象的一條對稱軸,求的值;
(2)求函數的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當a〉0時,寫出函數的單調遞減區間;
(2)設的最小值是,最大值是,求實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)= sin(2x),(,則的取值范圍為            .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=x3+sinx+1(xR),若f(a)=2,則f(-a)的值為                     (  )
A.3B.0C.-1D.-2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖象的一個對稱中心是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求函數的最小正周期;
(2 )當時,求函數的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的最小正周期為_____.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视