【題目】已知函數若對任意的實數x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,則實數m的取值范圍是( )
A.[1,4)B.(1,4)C.()D.[
]
科目:高中數學 來源: 題型:
【題目】有限數列同時滿足下列兩個條件:
①對于任意的(
),
;
②對于任意的(
),
,
,
三個數中至少有一個數是數列
中的項.[來
(1)若,且
,
,
,
,求
的值;
(2)證明:不可能是數列
中的項;
(3)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,平面PAC垂直圓O所在平面,直線PC與圓O所在平面所成角為60°,PA⊥PC.
(1)證明:AP⊥平面PBC
(2)求二面角P—AB一C的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在橢圓
上,直線
與x,y軸分別交于A,B兩點,0為坐標原點,且△OAB 的面積的最小值為
(1)求橢圓的離心率;
(2) 設點C、D、F2分別為橢圓的上、下頂點以及右焦點,E 為線段OD 的中點,直線F2E 與橢圓
相交于M、N 兩點,若
,求橢圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線Cn:x2﹣2nx+y2=0,(n=1,2,…).從點P(﹣1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點為Pn(xn,yn).
(1)求數列{xn}與{yn}的通項公式;
(2)證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的長軸長為4,左、右頂點分別為
,經過點
的動直線與橢圓
相交于不同的兩點
(不與點
重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線
相交于點
,判斷點
是否位于一條定直線上?若是,寫出該直線的方程. (結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南宋數學家楊輝1261年所著的《詳解九章算法》一書里出現了如圖所示的表,即楊輝三角,這是數學史上的一個偉大成就,在“楊輝三角”中,第行的所有數字之和為
,若去除所有為1的項,依次構成數列2,3,3,4,6,4,5,10,10,5,…,則此數列的前15項和為( )
A. 110B. 114C. 124D. 125
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com