已知函數.
(Ⅰ)若,且對于任意
恒成立,試確定實數
的取值范圍;
(Ⅱ)設函數,
求證:
科目:高中數學 來源: 題型:解答題
已知函數的圖像過坐標原點
,且在點
處的切線的斜率是
.
(1)求實數的值;
(2)求在區間
上的最大值;
(3)對任意給定的正實數,曲線
上是否存在兩點
,使得
是以
為直角頂點的直角三角形,且此三角形斜邊的中點在
軸上?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.
(Ⅰ)若是
上是增函數,求實數a的取值范圍;
(Ⅱ)證明:當a≥1時,證明不等式≤x+1對x∈R恒成立;
(Ⅲ)對于在(0,1)中的任一個常數a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請求出符合條件的一個x0;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80
,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的
倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com