【題目】如圖,在四面體中,平面
平面
,
,
,
分別為
,
,
的中點,
,
.
(1)求證: 平面
;
(2)若為
上任一點,證明
平面
.
科目:高中數學 來源: 題型:
【題目】某品牌電視生產廠家有A,B兩種型號的電視機參加了家電下鄉活動,若廠家對A,B兩種型號的電視機的投放金額分別為p,q萬元,農民購買電視機獲得的補貼分別為p,
ln q萬元,已知A,B兩種型號的電視機的投放總額為10萬元,且A,B兩種型號的電視機的投放金額均不低于1萬元,請你制定一個投放方案,使得在這次活動中農民得到的補貼最多,并求出最大值.(精確到0.1,參考數據:ln 4≈1.4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,下列四個正方體圖形中,A、B為正方體的兩個頂點,M、N、P分別為其所在棱的中點,能得出AB∥平面MNP的圖形序號是( 。
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分10分)已知等差數列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設等比數列{bn}滿足b2=a3,b3=a7.問:b6與數列{an}的第幾項相等?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研小組研究發現:一棵水蜜桃樹的產量(單位:百千克)與肥料費用
(單位:百元)滿足如下關系:
,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)
百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為
(單位:百元).
(1)求利潤函數的函數關系式,并寫出定義域;
(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,直線
傾斜角是
且過拋物線
的焦點,直線
被拋物線
截得的線段長是16,雙曲線
:
的一個焦點在拋物線
的準線上,則直線
與
軸的交點
到雙曲線
的一條漸近線的距離是( )
A. 2 B. C.
D. 1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com