【題目】如圖,矩形所在的平面和平面
互相垂直,等腰梯形
中,
,
,
,
,
,
分別為
,
的中點,
為底面
的重心.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】某人準備投資1200萬元辦一所中學,為了考慮社會效益和經濟效益,對該地區教育市場進行調查,得出一組數據,列表如下(以班級為單位).
市場調查表:
班級學生數 | 配備教師數 | 硬件建設費(萬元) | 教師年薪(萬元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根據物價部門的有關規定:初中是義務教育階段,收費標準適當控制,預計除書本費、辦公費外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環境等條件限制,辦學規模以20至30個班為宜(含20個班與30個),教師實行聘任制.初、高中教育周期均為三年,設初中編制為個班,高中編制為
個班,請你合理地安排招生計劃,使年利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與
軸,
軸分別交于
,
,線段
的中垂線
與拋物線
有兩個不同的交點
、
.
(1)求的取值范圍;
(2)是否存在,使得
,
,
,
四點共圓,若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線和圓
,傾斜角為45°的直線
過拋物線
的焦點,且
與圓
相切.
(1)求的值;
(2)動點在拋物線
的準線上,動點
在
上,若
在
點處的切線
交
軸于點
,設
.求證點
在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓1(a>b>0)的左右焦點分別為F1F2,左右頂點分別為AB,上頂點為T,且△TF1F2為等邊三角形.
(1)求此橢圓的離心率e;
(2)若直線y=kx+m(k>0)與橢圓交與CD兩點(點D在x軸上方),且與線段F1F2及橢圓短軸分別交于點MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②設ADBC的斜率分別為k1,k2,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C1的參數方程為(
為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
,曲線C2的極坐標方程為ρ=2sinθ.
(1)探究直線l與曲線C2的位置關系,并說明理由;
(2)若曲線C3的極坐標方程為,且曲線C3與曲線C1、C2分別交于M、N兩點,求|OM|2|ON|2的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com