【題目】已知.
(1)已知函數在點
的切線與圓
相切,求實數
的值.
(2)當時,
,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點
,且
使得曲線在點
處的切線
,則稱
為弦
的伴隨直線,特別地,當
時,又稱
為
的
—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線
的任意一條弦均有
—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結論;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程及
的直角坐標方程;
(2)設與曲線
、
分別交于異于原點的點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過焦點
的斜率存在的直線與拋物線交于
,
,且
.
(1)求拋物線的方程;
(2)已知與拋物線交于點
(異于原點),過點
作斜率小于
的直線交拋物線于
,
兩點(點
在
,
之間),過點
作
軸的平行線,交
于
,交
于B,
與
的面積分別為
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C過點M(1,),兩個焦點為A(﹣1,0),B(1,0),O為坐標原點.
(1)求橢圓C的方程;
(2)直線l過點A(﹣1,0),且與橢圓C交于P,Q兩點,求△BPQ面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年第24屆冬奧會將在中國北京和張家口舉行,為了宣傳冬奧會,某大學從全校學生中隨機抽取了120名學生,對是否收看第23屆平昌冬奧會開幕式情況進行了問卷調查,統計數據如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根據上表數據,能否有的把握認為,收看開幕式與性別有關?
(2)現從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動,若從這8人中隨機選取2人到較廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率.
附:,其中
.
P( | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規劃,又能發揮學科優勢,進而在高考中獲得更好的成績和實現自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數、外三科必學內容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調查,依據調查結果制作出如下兩個等高堆積條形圖:根據這兩幅圖中的信息,下列哪個統計結論是不正確的( )
A.樣本中的女生數量多于男生數量
B.樣本中有學物理意愿的學生數量多于有學歷史意愿的學生數量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com